Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Experiment
2.2. Statistical Analysis
3. Results
3.1. The Grain-Size Characteristics of the Particles
3.2. Variations in Grain-Size Fraction
3.3. Variations among Different Locations
3.4. Variations among Different Sampling Heights
4. Discussion
4.1. Effect of Enclosed/Open Environment
4.2. Effect of Distance to the Road
4.3. Effect of Height
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, J.; Jiang, D.; Lin, G.; Liu, K.; Wang, Q. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open 2015, 5, e009452. [Google Scholar] [CrossRef] [Green Version]
- Fuks, K.B.; Weinmayr, G.; Basagaña, X.; Gruzieva, O.; Hampel, R.; Oftedal, B.; Sørensen, M.; Wolf, K.; Aamodt, G.; Aasvang, G.M.; et al. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur. Heart J. 2017, 38, 983–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibald-Mulli, A.; Wichmann, H.E.; Kreyling, W.; Peters, A. Epidemiological evidence on health effects of ultrafine particles. J. Aerosol. Med. 2002, 15, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef]
- Maji, K.J.; Ye, W.F.; Arora, M.; Shiva Nagendra, S.M. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606–6630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.Q.; Cao, Z.G.; Zou, S.Y.; Liu, H.H.; Hai, X.; Wang, S.H.; Duan, J.; Xi, B.Y.; Yan, G.X.; Zhang, S.W.; et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci. Total Environ. 2018, 616–617, 417–426. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Esposito, R.; Calandrelli, R.; Tiwary, A.; Calfapietra, C. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Sci. Total Environ. 2016, 548–549, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Li, H.M.; Guo, X.; Sun, Y.K.; Li, S.M. Capacity of six shrub species to retain atmospheric particulates with different diameters. Environ. Sci. Pollut. Res. 2018, 25, 2643–2650. [Google Scholar] [CrossRef] [PubMed]
- Viecco, M.; Vera, S.; Jorquera, H.; Bustamante, W.; Gironás, J.; Dobbs, C.; Leiva, E. Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates. Sustainability 2018, 10, 2431. [Google Scholar] [CrossRef] [Green Version]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Hofman, J.; Bartholomeus, H.; Janssen, S. Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): A model and experimental approach. Urban For. Urban Green. 2016, 20, 265–276. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM 2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.J.; Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. (Includes Executive Summary). Forest Service General Technical Report (Final); Northeastern Forest Experiment Station: Radnor, PA, USA, 1994. [Google Scholar]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Les Forêts Rhénanes de Strasbourg. Available online: http://www.strasbourg.eu/environnement-qualite-de-vie/foret-reservesnaturelles/forets-rhenanes-strasbourgeoises (accessed on 25 August 2021).
- Popek, R.; Gawronska, H.; Wrochna, M.; Gawronski, S.W.; Saebo, A. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes—A 3-year study. Int. J. Phytoremediat. 2013, 15, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Saebo, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef]
- Song, Y.S.; Maher, B.A.; Li, F.; Wang, X.K.; Sun, X.; Zhang, H.X. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef]
- Chen, H.; Wang, B.; Xia, D.S.; Fan, Y.J.; Liu, H.; Tang, Z.R.; Ma, S. The influence of roadside trees on the diffusion of road traffic pollutants and their magnetic characteristics in a typical semi-arid urban area of Northwest China. Environ. Pollut. 2019, 252, 1170–1179. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Liang, D.; Ma, C.; Wang, Y.Q.; Wang, Y.J.; Chen-xi, Z. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176–21186. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Wuyts, K.; Samson, R. Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmos. Environ. 2019, 202, 328–344. [Google Scholar] [CrossRef]
- Hofman, J.; Wuyts, K.; Van Wittenberghe, S.; Samson, R. On the temporal variation of leaf magnetic parameters: Seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown. Sci. Total Environ. 2014, 493, 766–772. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Effective tree species for local air quality management. J. Arboric. 2000, 26, 12–19. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and wind speed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Chen, H. Indication to Urban Particulate Matter Pollution by Biomagnetic Monitoring; Lanzhou University: Lanzhou, China, 2020. (In Chinese) [Google Scholar]
- Baldacchini, C.; Castanheiro, A.; Maghakyan, N.; Sgrigna, G.; Verhelst, J.; Alonso, R.; Amorim, J.H.; Bellan, P.; Bojovic, D.D.; Breuste, J.; et al. How Does the Amount and Composition of PM Deposited on Platanus acerifolia Leaves Change across Different Cities in Europe? Environ. Sci. Technol. 2017, 51, 1147–1156. [Google Scholar] [CrossRef]
- Castanheiro, A.; Samson, R.; De Wael, K. Magnetic- and particle-based techniques to investigate metal deposition on urban green. Sci. Total Environ. 2016, 571, 594–602. [Google Scholar] [CrossRef]
- Long, Q.; Zhou, J.Z.; Meng, J.; Da, L.J. Magnetic Response of Street Tree Leaves to Particulate Pollution in Shanghai. Environ. Sci. 2012, 33, 4188–4193. [Google Scholar] [CrossRef]
- Moreno, E.; Sagnotti, L.; Dinarès-Turell, J.; Winkler, A.; Cascella, A. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ. 2003, 37, 2967–2977. [Google Scholar] [CrossRef]
- Rodriguez-Germade, I.; Mohamed, K.J.; Rey, D.; Rubio, B.; Garcia, A. The influence of weather and climate on the reliability of magnetic properties of tree leaves as proxies for air pollution monitoring. Sci. Total Environ. 2014, 468–469, 892–902. [Google Scholar] [CrossRef]
- Wang, H.X.; Maher, B.A.; Ahmed, I.A.; Davison, B. Efficient Removal of Ultrafine Particles from Diesel Exhaust by Selected Tree Species: Implications for Roadside Planting for Improving the Quality of Urban Air. Environ. Sci. Technol. 2019, 53, 6906–6916. [Google Scholar] [CrossRef]
- Zhang, C.X.; Huang, B.C.; Li, Z.Y.; He, L. Magnetic properties of highroad-side pine tree leaves in Beijing and their environmental significance. Chin. Sci. Bull. 2006, 51, 3041–3052. [Google Scholar] [CrossRef]
- Barima, Y.S.; Angaman, D.M.; N’Gouran, K.P.; Koffi, N.A.; Kardel, F.; De Canniere, C.; Samson, R. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment. Sci. Total Environ. 2014, 470–471, 975–982. [Google Scholar] [CrossRef]
- Cao, L.W.; Hu, S.; Erwin, A.; Shi, S.L.; Yin, G. The spatio-temperal variation of magnetic properties of tree leaves in Linfen, China and its indication to the atmospheric pollution of heavy metals. Chin. J. Geophys. 2016, 59, 1729–1742. [Google Scholar] [CrossRef]
- Hu, S.Y.; Duan, X.M.; Shen, M.J.; Blaha, U.; Roesler, W.; Yan, H.T.; Appel, E.; Hoffmann, V. Magnetic response to atmospheric heavy metal pollution recorded by dust-loaded leaves in Shougang industrial area, western Beijing. Chin. Sci. Bull. 2008, 53, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xia, D.S.; Yu, Y.; Jia, J.; Xu, S.J. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environ. Pollut. 2014, 184, 335–346. [Google Scholar] [CrossRef]
- Wang, B.; Xia, D.S.; Yu, Y.; Jia, J.; Xu, S.J. Magnetic records of heavy metal pollution in urban topsoil in Lanzhou, China. Chin. Sci. Bull. 2012, 58, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, X.; Zhao, Y.; Zhang, M.; Jia, J. Spatial and temporal distribution of pollution based on magnetic analysis of soil and atmospheric dustfall in Baiyin city, northwestern China. Int. J. Environ. Res. Public Health 2021, 18, 1681. [Google Scholar] [CrossRef]
- Xia, D.S.; Wang, B.; Yu, Y.; Jia, J.; Nie, Y.; Wang, X.; Xu, S.J. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan—A typical oasis city of Northwestern China. Sci. Total Environ. 2014, 485–486, 83–92. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Petrov, P. Magnetic susceptibility of road deposited sediments at a national scale-relation to population size and urban pollution. Environ. Pollut. 2014, 189, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.J.; Dearing, J.A.; Boyle, J.F.; Bloemendal, J.; Morse, A.P.J. Association between magnetic properties and element concentrations of Liverpool street dust and its implications. J. Appl. Geophys. 2001, 48, 83–92. [Google Scholar] [CrossRef]
- Xia, D.S.; Chen, F.H.; Bloemendal, J.; Liu, X.M.; Yu, Y.; Yang, L.P. Magnetic properties of urban dustfall in Lanzhou, China, and its environmental implications. Atmos. Environ. 2008, 42, 2198–2207. [Google Scholar] [CrossRef]
- Xia, D.S.; Yu, Y.; Tian, S.L.; Wang, B.; Wang, L. Use of environmental magnetic techniques to monitor urban pollution origins in Lanzhou, Northwest China. Environ. Earth Sci. 2011, 64, 1943–1949. [Google Scholar] [CrossRef]
- Hofman, J.; Wuyts, K.; Van Wittenberghe, S.; Brackx, M.; Samson, R. On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: Relationships and spatial variability of different particle size fractions. Environ. Pollut. 2014, 189, 63–72. [Google Scholar] [CrossRef]
- Dzierzanowski, K.; Popek, R.; Gawronska, H.; Saebo, A.; Gawronski, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.C.; An, Z.S.; Su, R.X. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Wang, Y.C. Study on the Source Apportionment and Physicochemical Characteristics of Foliar Dust on Urban Plants; Nanjing Forestry University: Nanjing, China, 2007. (In Chinese) [Google Scholar]
- Wang, H.X.; Shi, H.; Wang, Y.H. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. Sci. World J. 2015, 2015, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Przybysz, A.; Saebo, A.; Hanslin, H.M.; Gawronski, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Liu, L.; Guan, D.S.; Peart, M.R.; Wang, G.; Zhang, H.; Li, Z. The dust retention capacities of urban vegetation-a case study of Guangzhou, South China. Environ. Sci. Pollut. Res. 2013, 20, 6601–6610. [Google Scholar] [CrossRef]
- Ould-Dada, Z.; Environment, N.M.B.J.A. Resuspension of small particles from tree surfaces. Atmos. Environ. 2001, 35, 3799–3809. [Google Scholar] [CrossRef]
- Robert, M.A.; Kleeman, M.J.; Jakober, C.A. Size and Composition Distributions of Particulate Matter Emissions: Part 2-Heavy-Duty Diesel Vehicles. J. Air Waste Manag. 2012, 57, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Robert, M.A.; VanBergen, S.; Kleeman, M.J.; Jakober, C.A. Size and Composition Distributions of Particulate Matter Emissions: Part 1-Light-Duty Gasoline Vehicles. J. Air Waste Manag. 2012, 57, 1414–1428. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.F.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 2002, 36, 4323–4335. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Sioutas, C. Concentration and Size Distribution of Ultrafine Particles near a Major Highway. J. Air Waste Manag. 2011, 52, 1032–1042. [Google Scholar] [CrossRef]
- Szönyi, M.; Sagnotti, L.; Hirt, A.M. A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leaves. Geophys. J. R. Astron. Soc. 2010, 173, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Moreno, F.J.; Artinano, B.; Ramiro, E.D.; Barreiro, M.; Nunez, L.; Coz, E.; Dimitroulopoulou, C.; Vardoulakis, S.; Yague, C.; Maqueda, G.; et al. Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot. Environ. Pollut. 2019, 247, 195–205. [Google Scholar] [CrossRef]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.L.; Jones, K.C.; Di Guardo, A. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
SIRM | 3.795 | 0.013 | 17.821 | <0.0001 | 10.785 | <0.0001 | 5.454 | 0.002 | 11.540 | <0.0001 |
Weight of PM | 1.040 | 0.378 | 10.213 | <0.0001 | 5.269 | 0.002 | 2.067 | 0.110 | 3.714 | 0.014 |
0.02–1 μm | 0.545 | 0.653 | 12.178 | <0.0001 | 3.680 | 0.015 | 0.611 | 0.610 | 0.126 | 0.944 |
1–2.5 μm | 3.862 | 0.012 | 8.254 | <0.0001 | 2.965 | 0.036 | 1.318 | 0.274 | 0.584 | 0.627 |
2.5–10 μm | 4.832 | 0.004 | 1.373 | 0.256 | 4.609 | 0.005 | 2.026 | 0.116 | 2.745 | 0.048 |
>10 μm | 4.305 | 0.007 | 4.705 | 0.004 | 4.206 | 0.008 | 1.823 | 0.149 | 1.858 | 0.143 |
T0 | T1 | T2 | T3 | T4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
SIRM | 13.349 | <0.0001 | 14.142 | <0.0001 | 0.054 | 0.948 | 3.364 | 0.039 | 1.935 | 0.150 |
PM weight | 31.777 | <0.0001 | 27.794 | <0.0001 | 0.288 | 0.751 | 1.218 | 0.300 | 4.509 | 0.014 |
0.02–1 μm | 7.185 | 0.003 | 1.588 | 0.210 | 0.411 | 0.664 | 4.334 | 0.016 | 6.137 | 0.003 |
1–2.5 μm | 3.613 | 0.031 | 3.218 | 0.045 | 2.388 | 0.097 | 8.811 | <0.0001 | 4.712 | 0.011 |
2.5–10 μm | 4.852 | 0.010 | 19.351 | <0.0001 | 16.465 | <0.0001 | 8.274 | <0.001 | 1.566 | 0.215 |
>10 μm | 6.941 | 0.002 | 14.186 | <0.0001 | 11.456 | <0.0001 | 11.844 | <0.0001 | 1.615 | 0.205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, X.; Gu, C.; Zhang, M.; Zhao, Y.; Jia, J. Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China. Int. J. Environ. Res. Public Health 2021, 18, 11964. https://doi.org/10.3390/ijerph182211964
Wang B, Zhang X, Gu C, Zhang M, Zhao Y, Jia J. Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China. International Journal of Environmental Research and Public Health. 2021; 18(22):11964. https://doi.org/10.3390/ijerph182211964
Chicago/Turabian StyleWang, Bo, Xiaochen Zhang, Chenming Gu, Mei Zhang, Yuanhao Zhao, and Jia Jia. 2021. "Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China" International Journal of Environmental Research and Public Health 18, no. 22: 11964. https://doi.org/10.3390/ijerph182211964