Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Force Plate Jumps
2.4. Vertical Jump with Approach
2.5. Change of Direction Performance
2.6. Linear Sprint
2.7. Statistical Analysis
3. Results
3.1. Reliability and Descriptive Statistics
3.2. Association between the Eccentric Utilization Ratio and Performance Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014, 44, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Emmonds, S.; Nicholson, G.; Begg, C.; Jones, B.; Bissas, A. Importance of physical qualities for speed and change of direction ability in elite female soccer players. J. Strength Cond. Res. 2019, 33, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Northeast, J.; Russell, M.; Shearer, D.; Cook, C.J.; Kilduff, L.P. Predictors of linear and multidirectional acceleration in elite soccer players. J. Strength Cond. Res. 2019, 33, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Comfort, P. Vertical jump testing in rugby league: A rationale for calculating take-off momentum. J. Appl. Biomech. 2020, 36, 370–374. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop Jump Asymmetry is Associated with Reduced Sprint and Change-of-Direction Speed Performance in Adult Female Soccer Players. Sports 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Berney, J.; Lake, J.; Loturco, I.; Blagrove, R.; Turner, A.; Read, P. The Bilateral Deficit during Jumping Tasks: Relationship with Speed and Change of Direction Speed Performance. J. Strength Cond. Res. 2019, 35, 1833–1840. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Mcguigan, M.R.; Doyle, T.L.; Newton, M.; Edwards, D.J.; Nimphius, S.; Newton, R.U. Eccentric Utilization Ratio: Effect of Sport And Phase of Training. J. Strength Cond. Res. 2003, 20, 992–995. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; Casius, L.J.R. Is the effect of a countermovement on jump height due to active state development? Med. Sci. Sports Exerc. 2005, 37, 440–446. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef]
- Mclellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Influence of muscle slack on high-intensity sport performance: A review. Strength Cond. J. 2016, 38, 75–87. [Google Scholar] [CrossRef]
- Kubo, K.; Kawakami, Y.; Fukunaga, T. Influence of elastic properties of tendon structures on jump performance in humans. J. Appl. Physiol. 1999, 87, 2090–2096. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The difference between squat jump and countermovement jump in 770 male and female participants from different sports. Eur. J. Sport Sci. 2021. [Google Scholar] [CrossRef]
- Hawkins, S.B.; Doyle, T.L.A.; McGuigan, M.R. The effect of different training programs on eccentric energy utilization in college-aged males. J. Strength Cond. Res. 2009, 23, 1996–2002. [Google Scholar] [CrossRef]
- Gehri, D.J.; Ricard, M.D.; Kleiner, D.M.; Kirkendall, D.T. A Comparison of Plyometric Training Techniques for Improving Vertical Jump Ability and Energy Production. J. Strength Cond. Res. 1998, 12, 85–89. [Google Scholar] [CrossRef]
- McFarland, I.; Dawes, J.J.; Elder, C.; Lockie, R. Relationship of Two Vertical Jumping Tests to Sprint and Change of Direction Speed among Male and Female Collegiate Soccer Players. Sports 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Swinton, P.A.; Lloyd, R.; Keogh, J.W.L.; Agouris, I.; Stewart, A.D. Regression models of sprint, vertical jump, and change of direction performance. J. Strength Cond. Res. 2014, 28, 1839–1848. [Google Scholar] [CrossRef]
- Trecroci, A.; Duca, M.; Cavaggioni, L.; Rossi, A.; Scurati, R.; Longo, S.; Merati, G.; Alberti, G.; Formenti, D. Relationship between cognitive functions and sport-specific physical performance in youth volleyball players. Brain Sci. 2021, 11, 227. [Google Scholar] [CrossRef]
- Tine, S.; Damir, S.; Vedran, H.; Ognjen, U.; Edvin, D. Vertical Jumping Tests in Volleyball: Reliability, Validity, and Playing-Position Specifics. J. Strength Cond. Res. 2012, 26, 1532–1538. [Google Scholar]
- Formenti, D.; Trecroci, A.; Duca, M.; Vanoni, M.; Ciovati, M.; Rossi, A.; Alberti, G. Volleyball-Specific Skills and Cognitive Functions Can Discriminate Players of Different Competitive Levels. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Hedrick, A. Training for High Level Performance in Women’s Collegiate Volleyball: Part I Training Requirements. Strength Cond. J. 2007, 29, 50. [Google Scholar] [CrossRef] [Green Version]
- Forthomme, B.; Croisier, J.L.; Ciccarone, G.; Crielaard, J.M.; Cloes, M. Factors correlated with volleyball spike velocity. Am. J. Sports Med. 2005, 33, 1513–1519. [Google Scholar] [CrossRef]
- Sorenson, S.C.; Arya, S.; Souza, R.B.; Pollard, C.D.; Salem, G.J.; Kulig, K. Knee extensor dynamics in the volleyball approach jump: The influence of Patellar Tendinopathy. J. Orthop. Sports Phys. Ther. 2010, 40, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility t-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of Direction Deficit: A More Isolated Measure of Change of Direction Performance Than Total 505 Time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Grosprêtre, S.; Lepers, R. Performance characteristics of Parkour practitioners: Who are the traceurs? Eur. J. Sport Sci. 2016, 16, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Kopper, B.; Csende, Z.; Trzaskoma, L.; Tihanyi, J. Stretch-shortening cycle characteristics during vertical jumps carried out with small and large range of motion. J. Electromyogr. Kinesiol. 2014, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Training for power events. In The Encyclopedia of Sports Medicine; Komi, P.V., Ed.; Blackwell Science: Oxford, UK, 1992; pp. 169–179. [Google Scholar]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Sattler, T.; Sekulić, D.; Spasić, M.; Perić, M.; Krolo, A.; Uljević, O.; Kondrič, M. Analysis of the Association between Motor and Anthropometric Variables with Change of Direction Speed and Reactive Agility Performance. J. Hum. Kinet. 2015, 47, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Barr, M.J.; Nolte, V.W. Which measure of drop jump performance best predicts sprinting speed? J. Strength Cond. Res. 2011, 25, 1976–1982. [Google Scholar] [CrossRef]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [CrossRef]
- Young, W.; McLean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fitness 1995, 35, 13–19. [Google Scholar]
- Chelly, M.S.; Ghenem, M.A.; Abid, K.; Hermassi, S.; Tabka, Z.; Shephard, R.J. Effects of in-season short-term plyometric training program on leg power, jump-and sprint performance of soccer players. J. Strength Cond. Res. 2010, 24, 2670–2676. [Google Scholar] [CrossRef] [Green Version]
- Kubo, K.; Yata, H.; Kanehisa, H.; Fukunaga, T. Effects of isometric squat training on the tendon stiffness and jump performance. Eur. J. Appl. Physiol. 2006, 96, 305–314. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Soriano-Maldonado, A.; Rodríguez-Pérez, M.A.; García-De-Alcaraz, A.; Ortega-Becerra, M.; Jiménez-Reyes, P.; García-Ramos, A. The force-velocity profile as determinant of spike and serve ball speed in top-level male volleyball players. PLoS ONE 2021, 16, e0249612. [Google Scholar] [CrossRef]
Outcome Variables | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
SJ height (m) | 0.39 | 0.06 | 0.26 | 0.53 |
SJ peak force (N/kg) | 248.5 | 18.9 | 208.5 | 294.8 |
SJ peak power (W/kg) | 57.61 | 6.17 | 42.12 | 72.82 |
SJ average power (W/kg) | 23.18 | 3.25 | 18.40 | 31.13 |
CMJ height (m) | 0.42 | 0.06 | 0.31 | 0.57 |
CMJ peak force (N/kg) | 263.9 | 23.8 | 207.8 | 326.3 |
CMJ peak power (W/kg) | 58.3 | 6.4 | 46.1 | 71.7 |
CMJ average power (W/kg) | 32.2 | 4.2 | 24.2 | 43.7 |
EUR by height (m) | 1.11 | 0.11 | 0.86 | 1.31 |
EUR by peak force (N/kg) | 1.07 | 0.10 | 0.86 | 1.28 |
EUR by peak power (W/kg) | 1.01 | 0.07 | 0.89 | 1.22 |
EUR by average power (W/kg) | 1.40 | 0.15 | 1.11 | 1.76 |
Approach jump (cm) | 77.1 | 9.4 | 53.7 | 94.7 |
Modified T-test (s) | 5.37 | 0.25 | 4.89 | 6.00 |
505 test (s) | 2.32 | 0.12 | 2.13 | 2.71 |
CoD deficit (s) | 0.58 | 0.12 | 0.27 | 0.88 |
5 m sprint (s) | 1.53 | 0.06 | 1.40 | 1.70 |
10 m sprint (s) | 2.24 | 0.09 | 2.05 | 2.42 |
15 m sprint (s) | 2.91 | 0.11 | 2.73 | 3.27 |
25 m sprint (s) | 4.14 | 0.15 | 3.83 | 4.62 |
Approach Jump | Modified T-Test | 505 Test | CoD Deficit | Sprint 5 m | Sprint 10 m | Sprint 15 m | Sprint 25 m | |
---|---|---|---|---|---|---|---|---|
SJ height (m) | 0.62 ** | −0.36 * | −0.17 | 0.08 | −0.12 | −0.30 | −0.23 | −0.46 ** |
SJ peak force (N/kg) | 0.25 | −0.05 | 0.01 | 0.14 | −0.11 | −0.15 | 0.05 | −0.16 |
SJ peak power (W/kg) | 0.64 ** | −0.33 * | −0.10 | 0.16 | −0.11 | −0.30 * | −0.18 | −0.44 ** |
SJ average power (W/kg) | 0.42 * | −0.16 | −0.29 | −0.08 | −0.08 | −0.18 | −0.04 | −0.35 * |
CMJ height (m) | 0.74 ** | −0.391 * | −0.13 | 0.26 | −0.33 * | −0.46 ** | −0.31 | −0.49 ** |
CMJ peak force (N/kg) | 0.50 ** | −0.40 ** | −0.27 | −0.05 | −0.11 | −0.24 | −0.17 | −0.43 ** |
CMJ peak power (W/kg) | 0.70 ** | −0.37 * | −0.07 | 0.27 | −0.28 | −0.42 ** | −0.32 * | −0.48 ** |
CMJ average power (W/kg) | 0.70 ** | −0.33 * | −0.38 * | −0.04 | −0.030 | −0.38 * | −0.24 | −0.44 ** |
EUR by height (m) | 0.02 | 0.00 | 0.09 | 0.24 | −0.31 * | −0.21 | −0.09 | 0.03 |
EUR by peak force (N/kg) | 0.26 | −0.31 * | −0.25 | −0.14 | −0.04 | −0.11 | −0.21 | −0.28 |
EUR by peak power (W/kg) | 0.06 | −0.09 | 0.06 | 0.21 | −0.31 * | −0.20 | −0.22 | −0.05 |
EUR by average power (W/kg) | 0.34 * | −0.19 | −0.11 | 0.08 | −0.30 | −0.26 | −0.25 | −0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozinc, Ž.; Pleša, J.; Šarabon, N. Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 11754. https://doi.org/10.3390/ijerph182211754
Kozinc Ž, Pleša J, Šarabon N. Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players. International Journal of Environmental Research and Public Health. 2021; 18(22):11754. https://doi.org/10.3390/ijerph182211754
Chicago/Turabian StyleKozinc, Žiga, Jernej Pleša, and Nejc Šarabon. 2021. "Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players" International Journal of Environmental Research and Public Health 18, no. 22: 11754. https://doi.org/10.3390/ijerph182211754
APA StyleKozinc, Ž., Pleša, J., & Šarabon, N. (2021). Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players. International Journal of Environmental Research and Public Health, 18(22), 11754. https://doi.org/10.3390/ijerph182211754