Passive Vaping from Sub-Ohm Electronic Cigarette Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. E-Cigs and the Experimental Plan
2.2. Aerosol Measurements and Quality Assurance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. E-Cigarette Use among Youth and Young Adults: A Report of the Surgeon General. 2016. Available online: https://e-cigarettes.surgeongeneral.gov/documents/2016_SGR_Full_Report_non-508.pdf (accessed on 3 June 2021).
- Protano, C.; Di Milia, L.M.; Orsi, G.B.; Vitali, M. Electronic cigarette: A threat or an opportunity for public health? State of the art and future perspectives. Clin. Ter. 2015, 166, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Breland, A.; Soule, E.; Lopez, A.; Ramôa, C.; El-Hellani, A.; Eissenberg, T. Electronic cigarettes: What are they and what do they do? Ann. N.Y. Acad. Sci. 2017, 1394, 5–30. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems; Eaton, D.L.; Kwan, L.Y.; Stratton, K. (Eds.) Public Health Consequences of E-Cigarettes. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507187/ (accessed on 22 September 2021).
- King, A.C.; Brett, E.I.; Vena, A.; Miloslavich, K.; Cao, D. Electronic nicotine delivery systems (ENDS) cue reactivity in dual users: A combined analysis. Drug Alcohol Depend. 2021, 2271, 108909. [Google Scholar] [CrossRef]
- Pulvers, K.; Correa, J.B.; Krebs, P.; El Shahawy, O.; Marez, K.; Doran, N.; Myers, M. JUUL E-Cigarette Quit Attempts and Cessation Perceptions in College Student JUUL E-Cigarette Users. Am. J. Health Promot. 2021, 35, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Rankin, G.D.; Wingfors, H.; Uski, O.; Hedman, L.; Ekstrand-Hammarström, B.; Bosson, J.; Lundbäck, M. The toxic potential of a fourth-generation E-cigarette on human lung cell lines and tissue explants. J. Appl. Toxicol. 2019, 39, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Chaumont, M.; van de Borne, P.; Bernard, A.; Van Muylem, A.; Deprez, G.; Ullmo, J.; Starczewska, E.; Briki, R.; de Hemptinne, Q.; Zaher, W.; et al. Fourth generation e-cigarette vaping induces transient lung inflammation and gas exchange disturbances: Results from two randomized clinical trials. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L705–L719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omaiye, E.E.; Williams, M.; Bozhilov, K.N.; Talbot, P. Design features and elemental/metal analysis of the atomizers in pod-style electronic cigarettes. PLoS ONE 2021, 16, e0248127. [Google Scholar] [CrossRef] [PubMed]
- Bozier, J.; Chivers, E.K.; Chapman, D.G.; Larcombe, A.N.; Bastian, N.A.; Masso-Silva, J.A.; Byun, M.K.; McDonald, C.F.; Crotty Alexander, L.E.; Ween, M.P. The evolving landscape of e-cigarettes: A systematic review of recent evidence. Chest 2020, 157, 1362–1390. [Google Scholar] [CrossRef]
- Keith, R.; Bhatnagar, A. Cardiorespiratory and immunologic effects of electronic cigarettes. Curr. Addict. Rep. 2021, 8, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Kalininskiy, A.; Bach, C.T.; Nacca, N.E.; Ginsberg, G.; Marraffa, J.; Navarette, K.A.; McGraw, M.D.; Croft, D.P. E-cigarette, or vaping, product use associated lung injury (EVALI): Case series and diagnostic approach. Lancet Respir. Med. 2019, 7, 1017–1026. [Google Scholar] [CrossRef]
- Bharti, N.; Kumar, S.L.H.; Budhiraja, A. Pulmonary drug delivery as a vital route for delivering nanoparticles—A review. World J. Pharm. Pharm. Sci. 2013, 2, 4037–4060. [Google Scholar] [CrossRef]
- Scott, E.J. The pulmonary surfactant: Impact of tobacco smoke and related compounds on surfactant and lung development. Tob. Induc. Dis. 2004, 2, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Hayeck, N.; Zoghzoghi, C.; Karam, E.; Salman, R.; Karaoghlanian, N.; Shihadeh, A.; Eissenberg, T.; Zein El Dine, S.; Saliba, N.A. Carrier solvents of electronic nicotine delivery systems alter pulmonary surfactant. Chem. Res. Toxicol. 2021, 34, 1572–1577. [Google Scholar] [CrossRef]
- Canistro, D.; Vivarelli, F.; Cirillo, S.; Babot Marquillas, C.; Buschini, A.; Lazzaretti, M.; Marchi, L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Lodovici, M.; et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 2017, 7, 2028. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B.; Tibensky, M.; Horvathova, L.; Babal, P. E-Cigarettes and Cancer Risk. Cancer Prev. Res. 2020, 13, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Protano, C.; Avino, P.; Manigrasso, M.; Vivaldi, V.; Perna, F.; Valeriani, F.; Vitali, M. Environmental electronic vape exposure from four different generations of electronic cigarettes: Airborne Particulate Matter levels. Int. J. Environ. Res. Public Health 2018, 15, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environ. Int. 2018, 118, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Center for Diseases Control and Prevention. About Electronic Cigarettes (E-Cigarettes). 2021. Available online: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/about-e-cigarettes.html (accessed on 3 June 2021).
- Talih, S.; Salman, R.; Karam, E.; El-Hourani, M.; El-Hage, R.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.A.; Shihadeh, A. Hot wires and film boiling: Another look at carbonyl formation in electronic cigarettes. Chem. Res. Toxicol. 2020, 33, 2172–2180. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laussmann, D.; Helm, D. Air change measurements using tracer gases: Methods and results. Significance of air change for indoor air quality. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; Mazzeo, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 365–406. [Google Scholar]
- Avino, P.; Lopez, F.; Manigrasso, M. Regional deposition of submicrometer aerosol in the human respiratory system determined at 1-s time resolution of particle size distribution measurements. Aerosol Air Qual. Res. 2013, 13, 1702–1711. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.H.; Evans, G.J. Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci. Technol. 2009, 43, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Ryan Han, H.S.; Sreenath, A.; Birkeland, N.T.; Chancellor, G.J. Performance of a High Resolution Optical Particle Spectrometer; EAC2011: Manchester, UK, September 2011. [Google Scholar]
- Pratte, P.; Cosandey, S.; Goujon-Ginglinger, C. A scattering methodology for droplet sizing of e-cigarette aerosols. Inhal. Toxicol. 2016, 28, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, C.E. Comments on “Concentration and Size Distribution Measurements of Atmospheric Aerosols and a Test of the Theory of Self-Preserving Size Distributions”. J. Atmos. Sci. 1969, 26, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lee, E.S.; Nguyen, C.; Zhu, Y. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Tech. 2020, 54, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.P.; Strongin, R.M.; Peyton, D.H. Solvent chemistry in the electronic cigarette reaction vessel. Sci. Rep. 2017, 7, 42549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliba, N.A.; El Hellani, A.; Honein, E.; Salman, R.; Talih, S.; Zeaiter, J.; Shihadeh, A. Surface chemistry of electronic cigarette electrical heating coils: Effects of metal type on propylene glycol thermal decomposition. J. Anal. Appl. Pyrolysis 2018, 134, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Nukiyama, S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transfer. 1966, 9, 1419–1433. [Google Scholar] [CrossRef]
- Talih, S.; Salman, R.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Eissenberg, T.; Shihadeh, A. “Juice Monsters”: Sub-ohm vaping and toxic volatile aldehyde emissions. Chem. Res. Toxicol. 2017, 30, 1791–1793. [Google Scholar] [CrossRef] [PubMed]
- El-Hellani, A.; Al-Moussawi, S.; El-Hage, R.; Talih, S.; Salman, R.; Shihadeh, A.; Saliba, N.A. Carbon monoxide and small hydrocarbon emissions from sub-ohm electronic cigarettes. Chem. Res. Toxicol. 2019, 32, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Foust, A.S.; Wenzel, L.A.; Clump, C.W.; Maus, L.; Andersen, L.B. Principles of Unit Operations; John Wiley & Sons: Hoboken, NJ, USA, 1960. [Google Scholar]
- Ooi, B.G.; Dutta, D.; Kazipeta, K.; Chong, N.S. Influence of the e-cigarette emission profile by the ratio of glycerol to propylene glycol in e-liquid composition. ACS Omega 2019, 4, 13338–13348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floyd, E.L.; Queimado, L.; Wang, J.; Regens, J.L.; Johnson, D.L. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLoS ONE 2018, 13, e0210147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, D.B.; Li, W. Particle size measurement of electronic cigarette aerosol with a cascade impactor. Aerosol Sci. Tech. 2021, 55, 205–214. [Google Scholar] [CrossRef]
- Zhao, T.; Shu, S.; Guo, Q.; Zhu, Y. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 2016, 134, 61–69. [Google Scholar] [CrossRef] [Green Version]
Coil | R (Ω) | Alloy | Wire Diameter 1 (mm) | Total Surface Area (mm2) | N. of Coils | N. of Aerosol Exit Holes | Power (W) | Heat Flux (kW m−2) |
---|---|---|---|---|---|---|---|---|
V8 Baby Q2 | 0.6 | Kanthal | 0.36 | 192 | 2 | 1 | 25 | 130 |
V8 Baby Q2 | 0.6 | Kanthal | 0.36 | 192 | 2 | 1 | 40 | 208 |
V8 Baby Q2 | 0.4 | Kanthal | 0.41 | 219 | 2 | 1 | 80 | 365 |
V8 Baby-T8 | 0.15 | Kanthal | 0.30 | 377 | 8 | 4 | 50 | 133 |
V8 Baby-T8 | 0.15 | Kanthal | 0.30 | 377 | 8 | 4 | 100 | 265 |
V8 Baby-T8 | 0.15 | Kanthal | 0.30 | 377 | 8 | 4 | 150 | 398 |
E-Cig | E-Liquid | Coil | Operative Conditions (W) | Code |
---|---|---|---|---|
First generation Young Category® | Liquid without nicotine | 1 | 1 | 1st e-cig No Nic |
Liquid with a nicotine at 24 mg mL−1 | 1 | 1 | 1st e-cig Nic | |
Fourth generation G 150 Smok Kit® | Pacha Mama-Mango Pitaya Ananas® without nicotine with 80/20 VG/PG | V8 Baby Q2 0.6 Ω | 25 | 25 W No Nic 80/20 VG/PG |
V8 Baby Q2 0.6 Ω | 40 | 40 W No Nic 80/20 VG/PG | ||
V8 Baby-T8 0.15 Ω | 50 | 50 W No Nic 80/20 VG/PG | ||
V8 Baby Q2 0.4 Ω | 80 | 80 W No Nic 80/20 VG/PG | ||
V8 Baby-T8 0.15 Ω | 100 | 100 W No Nic 80/20 VG/PG | ||
V8 Baby-T8 0.15 Ω | 150 2 | 150 W No Nic 80/20 VG/PG | ||
SmookeKannel® with nicotine at 9 mg mL−1 with 50/50 VG/PG | V8 Baby Q2 0.6 Ω | 25 | 25 W Nic 50/50 VG/PG | |
V8 Baby Q2 0.6 Ω | 40 | 40 W Nic 50/50 VG/PG | ||
V8 Baby-T8 0.15 Ω | 50 | 50 W Nic 50/50 VG/PG | ||
V8 Baby Q2 0.4 Ω | 80 | 80 W Nic 50/50 VG/PG | ||
V8 Baby-T8 0.15 Ω | 100 | 100 W Nic 50/50 VG/PG | ||
V8 Baby-T8 0.15 Ω | 150 2 | 150 W Nic 50/50 VG/PG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manigrasso, M.; Protano, C.; Vitali, M.; Avino, P. Passive Vaping from Sub-Ohm Electronic Cigarette Devices. Int. J. Environ. Res. Public Health 2021, 18, 11606. https://doi.org/10.3390/ijerph182111606
Manigrasso M, Protano C, Vitali M, Avino P. Passive Vaping from Sub-Ohm Electronic Cigarette Devices. International Journal of Environmental Research and Public Health. 2021; 18(21):11606. https://doi.org/10.3390/ijerph182111606
Chicago/Turabian StyleManigrasso, Maurizio, Carmela Protano, Matteo Vitali, and Pasquale Avino. 2021. "Passive Vaping from Sub-Ohm Electronic Cigarette Devices" International Journal of Environmental Research and Public Health 18, no. 21: 11606. https://doi.org/10.3390/ijerph182111606
APA StyleManigrasso, M., Protano, C., Vitali, M., & Avino, P. (2021). Passive Vaping from Sub-Ohm Electronic Cigarette Devices. International Journal of Environmental Research and Public Health, 18(21), 11606. https://doi.org/10.3390/ijerph182111606