Analysis of Polybrominated Diphenyl Ethers and Lipid Composition in Human Breast Milk and Their Correlation with Infant Neurodevelopment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Chemical Analysis of PBDEs
2.3. Chemical Analysis of Lipids
2.4. Neurodevelopmental Test
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Study Participant Pairs
3.2. Association between HBM PBDEs and Bayley-III Scores
3.3. Association between HBM Lipids and Bayley-III Scores
3.4. Association between HBM Fatty Acids and Bayley-III Scores
3.5. RDA Map Analysis of Bayley-III Scores with HBM PBDEs, Lipids, and Fatty Acids
3.6. Multivariate Analyses of HBM PBDEs, Lipids, Fatty Acids, and Bayley-III Scores
3.7. Information Related to Significant Lipids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiqi, M.A.; Laessig, R.H.; Reed, K.D. Polybrominated diphenyl ethers (PBDEs): New pollutants-old diseases. Clin. Med. Res. 2003, 1, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Alaee, M.; Arias, P.; Sjodin, A.; Bergman, A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003, 29, 683–689. [Google Scholar] [CrossRef]
- Dodson, R.E.; Perovich, L.J.; Covaci, A.; Van den Eede, N.; Ionas, A.C.; Dirtu, A.C.; Brody, J.G.; Rudel, R.A. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California. Environ. Sci. Technol. 2012, 46, 13056–13066. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.R.; Lin, D.Y.; Chen, K.Y.; Gou, Y.Y.; Chiou, T.H.; Lee, W.J.; Chen, S.J.; Wang, L.C. Atmospheric concentrations of persistent organic pollutants over the Pacific Ocean near southern Taiwan and the northern Philippines. Sci. Total Environ. 2014, 491–492, 51–59. [Google Scholar] [CrossRef]
- McGrath, T.J.; Morrison, P.D.; Sandiford, C.J.; Ball, A.S.; Clarke, B.O. Widespread polybrominated diphenyl ether (PBDE) contamination of urban soils in Melbourne, Australia. Chemosphere 2016, 164, 225–232. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Q.; Liu, X.; Wang, J. Occurrence, distribution and risk assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in nine water sources. Ecotoxicol. Environ. Saf. 2015, 115, 55–61. [Google Scholar] [CrossRef]
- Chen, M.W.; Castillo, B.A.A.; Lin, D.Y.; Chao, H.R.; Tayo, L.L.; Gou, Y.Y.; Chen, F.A.; Huang, K.L. Levels of PCDD/Fs, PBDEs, and PBDD/Fs in breast milk from southern Taiwan. Bull. Environ. Contam. Toxicol. 2018, 100, 369–375. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Peng, L.; Zhang, W.; Liu, C.; Yang, Q.; Zheng, S.; Bao, M.; Huang, Y.; Wu, K. Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: A case-control study. Environ. Res. 2018, 167, 160–168. [Google Scholar] [CrossRef]
- Xu, L.; Huo, X.; Zhang, Y.; Li, W.; Zhang, J.; Xu, X. Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. Environ. Pollut. 2015, 196, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry Public Health Statement For PBDEs. Available online: https://www.atsdr.cdc.gov/phs/phs.asp?id=1449&tid=183 (accessed on 9 December 2020).
- Toms, L.M.; Sjodin, A.; Harden, F.; Hobson, P.; Jones, R.; Edenfield, E.; Mueller, J.F. Serum polybrominated diphenyl ether (PBDE) levels are higher in children (2–5 years of age) than in infants and adults. Environ. Health Perspect. 2009, 117, 1461–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, H.R.; Tsou, T.C.; Huang, H.L.; Chang-Chien, G.P. Levels of breast milk PBDEs from southern Taiwan and their potential impact on neurodevelopment. Pediatr. Res. 2011, 70, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Fort, M.; Martinez, D.; Carsin, A.E.; Forns, J.; Grimalt, J.O.; Santa Marina, L.; Lertxundi, N.; Sunyer, J.; Vrijheid, M. Polybrominated diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants. Environ. Health Perspect. 2012, 120, 1760–1765. [Google Scholar] [CrossRef] [Green Version]
- Shy, C.G.; Huang, H.L.; Chang-Chien, G.P.; Chao, H.R.; Tsou, T.C. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers. Bull. Environ. Contam. Toxicol. 2011, 87, 643–648. [Google Scholar] [CrossRef]
- Braun, J.M.; Yolton, K.; Stacy, S.L.; Erar, B.; Papandonatos, G.D.; Bellinger, D.C.; Lanphear, B.P.; Chen, A. Prenatal environmental chemical exposures and longitudinal patterns of child neurobehavior. Neurotoxicology 2017, 62, 192–199. [Google Scholar] [CrossRef]
- Delplanque, B.; Gibson, R.; Koletzko, B.; Lapillonne, A.; Strandvik, B. Lipid quality in infant nutrition: Current knowledge and future opportunities. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Carlson, S.E.; van Goudoever, J.B. Should infant formula provide both omega-3 dha and omega-6 arachidonic acid? Ann. Nutr. Metab. 2015, 66, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Docosahexaenoic acid. Ann. Nutr. Metab. 2016, 69 (Suppl. S1), 7–21. [Google Scholar] [CrossRef]
- Williams, J.H.; Errington, M.L.; Lynch, M.A.; Bliss, T.V. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 1989, 341, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Brei, C.; Stecher, L.; Brunner, S.; Ensenauer, R.; Heinen, F.; Wagner, P.D.; Hermsdorfer, J.; Hauner, H. Impact of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring neurodevelopment: 5-year follow-up of a randomized controlled trial. Eur. J. Clin. Nutr. 2017, 71, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.C.; Que, D.E.; Bongo, S.J.; Tayo, L.L.; Lin, Y.H.; Lin, C.W.; Lin, S.L.; Gou, Y.Y.; Hsu, W.L.; Shy, C.G.; et al. Residue levels of organochlorine pesticides in breast milk and its associations with cord blood thyroid hormones and the offspring’s neurodevelopment. Int. J. Environ. Res. Public Health 2019, 16, 1438. [Google Scholar] [CrossRef] [Green Version]
- Shy, C.G.; Huang, H.L.; Chao, H.R.; Chang-Chien, G.P. Cord blood levels of thyroid hormones and IGF-1 weakly correlate with breast milk levels of PBDEs in Taiwan. Int. J. Hyg. Environ. Health 2012, 215, 345–351. [Google Scholar] [CrossRef]
- Lowe, J.R.; Erickson, S.J.; Schrader, R.; Duncan, A.F. Comparison of the Bayley II Mental Developmental Index and the Bayley III Cognitive Scale: Are we measuring the same thing? Acta Paediatr. 2012, 101, e55–e58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbstman, J.B.; Sjodin, A.; Kurzon, M.; Lederman, S.A.; Jones, R.S.; Rauh, V.; Needham, L.L.; Tang, D.; Niedzwiecki, M.; Wang, R.Y.; et al. Prenatal exposure to PBDEs and neurodevelopment. Environ. Health Perspect. 2010, 118, 712–719. [Google Scholar] [CrossRef]
- Ding, G.; Yu, J.; Cui, C.; Chen, L.; Gao, Y.; Wang, C.; Zhou, Y.; Tian, Y. Association between prenatal exposure to polybrominated diphenyl ethers and young children’s neurodevelopment in China. Environ. Res. 2015, 142, 104–111. [Google Scholar] [CrossRef]
- Chen, A.; Yolton, K.; Rauch, S.A.; Webster, G.M.; Hornung, R.; Sjodin, A.; Dietrich, K.N.; Lanphear, B.P. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 5 years of age: The HOME study. Environ. Health Perspect. 2014, 122, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Hedden, P.; Sponsel, V. A century of gibberellin research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [Green Version]
- Reifenrath, W.G.; Olson, J.J.; Vedula, U.; Osimitz, T.G. Percutaneous absorption of an insect repellent p-menthane-3,8-DIOL: A model for human dermal absorption. J. Toxicol. Environ. Health A 2009, 72, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Bialecki, M.; Hladon, B.; Drozdz, B.; Bloszyk, E.; Szwemin, S.; Bobkiewicz, T. Sesquiterpene lactones. Part XI. Studies on the cytotoxic effect of alatolide on the human lymphocytes and neoplastic cells in tissue culture. Pol. J. Pharmacol. Pharm. 1974, 26, 511–518. [Google Scholar]
- Edwards, G.; Aribindi, K.; Guerra, Y.; Lee, R.K.; Bhattacharya, S.K. Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie 2014, 101, 232–247. [Google Scholar] [CrossRef] [Green Version]
- Bodh, S.A.; Kumar, V.; Raina, U.K.; Ghosh, B.; Thakar, M. Inflammatory glaucoma. Oman J. Ophthalmol. 2011, 4, 3–9. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Coleman, R.A.; Lee, D.P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 2004, 43, 134–176. [Google Scholar] [CrossRef]
- Barbacini, P.; Casas, J.; Torretta, E.; Capitanio, D.; Maccallini, G.; Hirschler, V.; Gelfi, C. Regulation of serum sphingolipids in Andean children born and living at high altitude (3775 m). Int. J. Mol. Sci. 2019, 20, 2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujol-Lereis, L.M. Alteration of sphingolipids in biofluids: Implications for neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 3564. [Google Scholar] [CrossRef] [Green Version]
- Belkind-Gerson, J.; Carreon-Rodriguez, A.; Contreras-Ochoa, C.O.; Estrada-Mondaca, S.; Parra-Cabrera, M.S. Fatty acids and neurodevelopment. J. Pediatr. Gastroenterol. Nutr. 2008, 47 (Suppl. S1), S7–S9. [Google Scholar] [CrossRef] [PubMed]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.I.; Kang, K.S. Function of capric acid in cyclophosphamide-induced intestinal inflammation, oxidative stress, and barrier function in pigs. Sci. Rep. 2017, 7, 16530. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Dai, Z.; Cao, Y.; Shen, Q.; Zhang, Y. Docosapentaenoic acid (DPA, 22:5n-3) ameliorates inflammation in an ulcerative colitis model. Food Funct. 2019, 10, 4199–4209. [Google Scholar] [CrossRef] [PubMed]
- Yagami, T.; Koma, H.; Yamamoto, Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol. Neurobiol. 2016, 53, 4754–4771. [Google Scholar] [CrossRef]
- Innis, S.M.; Dyer, R.; Nelson, C.M. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 1994, 29, 541–545. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Lin, C.I.; Liao, H.; Chen, Y.H.; Lin, S.H. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int. J. Mol. Sci. 2014, 15, 20876–20899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, H.R.; Shy, C.G.; Wang, S.L.; Chen, S.C.; Koh, T.W.; Chen, F.A.; Chang-Chien, G.P.; Tsou, T.C. Impact of non-occupational exposure to polybrominated diphenyl ethers on menstruation characteristics of reproductive-age females. Environ. Int. 2010, 36, 728–735. [Google Scholar] [CrossRef]
- Chao, H.R.; Wang, S.L.; Lee, W.J.; Wang, Y.F.; Papke, O. Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environ. Int. 2007, 33, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.W.; Chih-Cheng Chen, S.; Chang-Chien, G.P.; Lin, D.Y.; Chen, F.A.; Chao, H.R. Breast-milk levels of polybrominated diphenyl ether flame retardants in relation to women’s age and pre-pregnant body mass index. Int. J. Hyg. Environ. Health 2010, 213, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Wang, S.L.; Chen, F.A.; Chao, H.A.; Tsou, T.C.; Shy, C.G.; Papke, O.; Kuo, Y.M.; Chao, H.R. Associations of polybrominated diphenyl ethers (PBDEs) in breast milk and dietary habits and demographic factors in Taiwan. Food Chem. Toxicol. 2008, 46, 1925–1932. [Google Scholar] [CrossRef]
- Wan, Y.; Wiseman, S.; Chang, H.; Zhang, X.; Jones, P.D.; Hecker, M.; Kannan, K.; Tanabe, S.; Hu, J.; Lam, M.H.; et al. Origin of hydroxylated brominated diphenyl ethers: Natural compounds or man-made flame retardants? Environ. Sci. Technol. 2009, 43, 7536–7542. [Google Scholar] [CrossRef] [PubMed]
- Corsolini, S.; Baroni, D.; Martellini, T.; Pala, N.; Cincinelli, A. PBDEs and PCBs in terrestrial ecosystems of the Victoria Land, Antarctica. Chemosphere 2019, 231, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Choi, Y.J.; Barghi, M.; Yoon, Y.J.; Kim, J.H.; Kim, J.H.; Chang, Y.S. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica. Environ. Pollut. 2018, 235, 302–311. [Google Scholar] [CrossRef]
- Gou, Y.Y.; Que, D.E.; Chuang, C.Y.; Chao, H.R.; Shy, C.G.; Hsu, Y.C.; Lin, C.W.; Chuang, K.P.; Tsai, C.C.; Tayo, L.L. Dust levels of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the Taiwanese elementary school classrooms: Assessment of the risk to school-age children. Sci. Total Environ. 2016, 572, 734–741. [Google Scholar] [CrossRef]
- Guo, J.; Lin, K.; Deng, J.; Fu, X.; Xu, Z. Polybrominated diphenyl ethers in indoor air during waste TV recycling process. J. Hazard. Mater. 2015, 283, 439–446. [Google Scholar] [CrossRef]
- Lin, S.M.; Chen, F.A.; Huang, Y.F.; Hsing, L.L.; Chen, L.L.; Wu, L.S.; Liu, T.S.; Chang-Chien, G.P.; Chen, K.C.; Chao, H.R. Negative associations between PBDE levels and thyroid hormones in cord blood. Int. J. Hyg. Environ. Health 2011, 214, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, M.; Vorkamp, K.; Thomsen, M.; Knudsen, L.E. Human internal and external exposure to PBDEs—A review of levels and sources. Int. J. Hyg. Environ. Health 2009, 212, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Koenig, C.M.; Lango, J.; Pessah, I.N.; Berman, R.F. Maternal transfer of BDE-47 to offspring and neurobehavioral development in C57BL/6J mice. Neurotoxicol. Teratol. 2012, 34, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adgent, M.A.; Hoffman, K.; Goldman, B.D.; Sjodin, A.; Daniels, J.L. Brominated flame retardants in breast milk and behavioural and cognitive development at 36 months. Paediatr. Perinat. Epidemiol. 2014, 28, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Hertz-Picciotto, I.; Bergman, A.; Fangstrom, B.; Rose, M.; Krakowiak, P.; Pessah, I.; Hansen, R.; Bennett, D.H. Polybrominated diphenyl ethers in relation to autism and developmental delay: A case-control study. Environ. Health 2011, 10, 1. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean ± SD | Range | n (%) |
---|---|---|---|
Mothers | |||
Age (y) | 29.5 ± 4.64 | 17.0–40.0 | |
Highest level of education | |||
Below senior level in high school | - | - | 5 (5%) |
Senior level in high school | - | - | 26 (26%) |
Junior college | - | - | 28 (28%) |
University | - | - | 35 (35%) |
Graduate school | - | - | 6 (6%) |
Family income | |||
<300,000 NTD | - | - | 14 (14%) |
300,000–600,000 NTD | - | - | 32 (32%) |
600,000–1,000,000 NTD | - | - | 39 (39%) |
1,000,000–1,500,000 NTD | - | - | 11 (11%) |
>1,500,000 NTD | - | - | 4 (4%) |
Smoking during pregnancy, Yes | - | - | 4 (4%) |
Alcohol consumption during pregnancy, Yes | - | - | 0 (0%) |
Prepregnant BMI (kg/m2) | 22.5 ± 4.1 | 15.4–34.9 | |
Parity (number) | 1.9 ± 0.8 | 1.0–4.0 | |
Living period in Kaoping area (y) | 22.2 ± 11.6 | 1.0–40.0 | |
Newborns | |||
Female | - | - | 51 (51%) |
Breastfed for 6 months, Yes | - | 100 (100%) | |
Breastfed for more than 6 months, Yes | - | - | 0 (0%) |
Gestational age (weeks) | 38.5 ± 1.4 | 32.0–44.0 | |
Birth weight (kg) | 3.10 ± 0.36 | 2.30–4.12 | |
Birth length (cm) | 49.1 ± 1.7 | 44.0–55.0 | |
Head circumference (cm) | 33.5 ± 1.3 | 30.5–36.0 | |
Indoor smoking exposure, Yes | - | - | 10 (10%) |
Neurodevelopment | |||
Infants (Bayley-III) | |||
Cognitive scale (score) | 104.0 ± 10.5 | 85.0–130.0 | |
Language scale (score) | 102.0 ± 12.1 | 74.0–131.0 | |
Motor scale (score) | 99.7 ± 9.8 | 79.0–130.0 | |
Social–emotional scale (score) | 98.5 ± 18.2 | 55.0–140.0 | |
Adaptive behavior scale (score) | 100.0 ± 14.3 | 62.0–133.0 |
PBDEs (Bromine Number) | N > LOD a | MDL b | Abundance (Mean ± SD) | Median | 95% CI |
---|---|---|---|---|---|
BDE-7 (2 Br) | 11 | 1.04 | 1.08 ± 0.74 | 0.90 | 0.93 c–1.22 d |
BDE-15 (2 Br) | 100 | 0.98 | 69.00 ± 73.00 | 46.00 | 54.50–83.50 |
BDE-17 (3 Br) | 11 | 3.07 | 5.53 ± 6.63 | 3.97 | 4.22–6.85 |
BDE-28 (3 Br) | 100 | 1.85 | 128.00 ± 440.00 | 65.20 | 40.50–215.00 |
BDE-47 (4 Br) | 100 | 17.4 | 1620.00 ± 8130.00 | 535.00 | 2.74–3230.00 |
BDE-49 (4 Br) | 98 | 3.87 | 44.70 ± 116.00 | 32.50 | 21.60–67.70 |
BDE-66 (4 Br) | 96 | 3.45 | 23.60 ± 87.70 | 12.40 | 6.15–41.00 |
BDE-71 (4 Br) | 10 | 4.33 | 4.26 ± 4.14 | 3.25 | 3.44–5.08 |
BDE-77 (4 Br) | 30 | 1.28 | 1.31 ± 1.33 | 0.78 | 1.31–1.58 |
BDE-85 (5 Br) | 78 | 1.37 | 24.80 ± 113.00 | 8.36 | 2.41–47.10 |
BDE-99 (5 Br) | 100 | 10.0 | 391.00 ± 1960.00 | 145.00 | 547.00–800.00 |
BDE-100 (5 Br) | 100 | 3.18 | 402.00 ± 1280.00 | 190.00 | 148.00–656.00 |
BDE-119 (5 Br) | 48 | 1.95 | 18.90 ± 17.70 | 11.50 | 15.40–22.40 |
BDE-126 (5 Br) | 20 | 0.996 | 2.27 ± 15.60 | 0.29 | −0.83–5.36 |
BDE-138 (6 Br) | 72 | 1.98 | 11.60 ± 28.20 | 6.11 | 5.95–17.10 |
BDE-139 (6 Br) | 76 | 2.04 | 16.30 ± 38.30 | 10.10 | 8.65–23.80 |
BDE-140 (6 Br) | 76 | 1.00 | 10.50 ± 14.60 | 7.61 | 7.57–13.40 |
BDE-153 (6 Br) | 100 | 7.04 | 1080.00 ± 1140.00 | 851.00 | 851.00–1300.00 |
BDE-154 (6 Br) | 100 | 1.04 | 112.00 ± 141.00 | 69.20 | 84.00–140.00 |
BDE-156 (6 Br) | 0 | 1.02 | 0.51 ± 0.00 | 0.51 | - |
BDE-183 (7 Br) | 98 | 4.88 | 206.00 ± 602.00 | 112.00 | 86.60–326.00 |
BDE-184 (7 Br) | 30 | 3.01 | 8.12 ± 7.11 | 6.09 | 6.71–9.53 |
BDE-191 (7 Br) | 14 | 4.11 | 6.20 ± 2.73 | 2.06 | 5.66–6.74 |
BDE-196 (8 Br) | 96 | 6.06 | 39.00 ± 44.50 | 26.1 | 30.10–47.80 |
BDE-197 (8 Br) | 100 | 2.94 | 262.00 ± 293.00 | 171.00 | 204.00–320.00 |
BDE-203 (8 Br) | 99 | 7.23 | 71.20 ± 82.30 | 45.50 | 54.90–87.50 |
BDE-206 (9 Br) | 76 | 1.74 | 91.30 ± 239.00 | 46.00 | 43.80–139.00 |
BDE-207 (9 Br) | 100 | 1.53 | 212.00 ± 288.00 | 116.00 | 154.00–269.00 |
BDE-208 (9 Br) | 96 | 1.11 | 83.30 ± 143.00 | 44.10 | 54.80–112.00 |
BDE-209 (10 Br) | 98 | 115.00 | 863.00 ± 1940.00 | 341.00 | 479.00–1250.00 |
Σ30PBDEs | - | - | 5800.00 ± 12,800.00 | 3400.00 | 3270.00–8340.00 |
Variables | Cognitive (r) | Language (r) | Motor (r) | Social–Emotional (r) | Adaptive Behavior (r) |
---|---|---|---|---|---|
Bayley-III score | |||||
Cognitive | 1 | 0.474 *** | 0.345 *** | 0.149 | 0.078 |
Language | 0.474 *** | 1 | 0.371 *** | 0.134 | 0.316 ** |
Motor | 0.345 *** | 0.371 *** | 1 | 0.053 | 0.255 * |
Social–emotional | 0.149 | 0.134 | 0.053 | 1 | 0.385 *** |
Adaptive behavior | 0.078 | 0.316 ** | 0.255 * | 0.385 *** | 1 |
PBDEs (pg/g lipid) | |||||
BDE-17 (3 Br) | −0.058 | 0.061 | 0.048 | −0.019 | −0.006 |
BDE-49 (4 Br) | −0.039 | 0.089 | 0.061 | −0.040 | −0.022 |
BDE-66 (4 Br) | −0.025 | 0.040 | 0.016 | −0.004 | −0.018 |
BDE-71 (4 Br) | −0.003 | 0.063 | −0.030 | 0.014 | −0.022 |
BDE-99 (5 Br) | −0.109 | 0.077 | −0.139 | −0.083 | −0.045 |
BDE-126 (5 Br) | −0.069 | −0.135 | −0.047 | −0.046 | −0.081 |
BDE-140 (6 Br) | 0.111 | 0.015 | 0.095 | 0.175 † | 0.022 |
BDE-184 (7 Br) | 0.152 | 0.056 | 0.076 | 0.107 | −0.023 |
BDE-203 (8 Br) | −0.077 | −0.051 | −0.005 | 0.216 * | 0.029 |
BDE-206 (9 Br) | −0.189 † | 0.026 | 0.055 | 0.024 | −0.008 |
BDE-209 (10 Br) | −0.218 * | 0.150 | 0.043 | −0.056 | 0.028 |
Σ30 PBDEs | −0.135 | −0.087 | −0.028 | −0.075 | −0.0360 |
Variables | Abundance (Mean ± SD) | Median | 95% CI | Cognitive (r) | Language (r) | Motor (r) | Social–Emotional (r) | Adaptive Behavior (r) |
---|---|---|---|---|---|---|---|---|
Lipids (rt_m/z) | ||||||||
0.83_309.2057 | 1366.66 ± 1013.64 | 1202.45 | 1165.53 c–1567.79 d | −0.004 | 0.010 | −0.146 | 0.203 * | 0.138 |
0.93_353.2246 | 2426.53 ± 1583.85 | 2177.67 | 2112.26–2740.80 | 0.017 | 0.016 | −0.121 | 0.157 | 0.213 * |
1.02_335.2180 | 2500.73 ± 1680.54 | 2125.61 | 2167.27–2834.18 | 0.103 | 0.083 | −0.075 | 0.064 | 0.213 * |
1.02_348.2749 | 3723.28 ± 3159.94 | 3034.29 | 3096.28–4350.28 | −0.024 | −0.029 | −0.207 * | 0.196 † | 0.095 |
1.02_367.1932 | 1662.83 ± 908.85 | 1533.17 | 1482.49–1843.16 | −0.023 | 0.011 | −0.082 | 0.261 ** | 0.232 * |
1.02_369.2070 | 2453.69 ± 1599.47 | 2230.90 | 2136.31–2771.05 | −0.034 | −0.076 | −0.099 | 0.240 * | 0.168 † |
1.05_173.1178 | 661.22 ± 429.86 | 577.72 | 575.93–746.51 | 0.02 | 0.019 | −0.148 | 0.193 † | 0.150 |
1.05_195.1378 | 692.75 ± 446.62 | 601.81 | 604.13–781.37 | 0.046 | 0.054 | −0.125 | 0.197 * | 0.158 |
1.05_311.2221 | 2140.96 ± 1291.01 | 1772.66 | 1884.79–2397.12 | −0.023 | 0.007 | −0.152 | 0.203 * | 0.145 |
1.05_349.1826 | 2099.01 ± 1031.09 | 1891.40 | 1894.42–2303.60 | 0.123 | 0.081 | −0.039 | 0.232 * | 0.213 * |
1.05_351.1958 | 6779.36 ± 4081.45 | 5925.57 | 5969.51–7589.21 | 0.146 | 0.103 | −0.018 | 0.164 | 0.247 * |
1.09_293.2119 | 2669.1 ± 1541.38 | 2240.20 | 2363.26–2974.95 | 0.018 | 0.056 | −0.123 | 0.211 * | 0.160 |
1.09_330.2644 | 4647.12 ± 3779.65 | 3644.02 | 3897.15–5397.08 | 0.090 | 0.121 | −0.096 | 0.149 | 0.213 * |
1.98_417.2979 | 1758.6 ± 548.34 | 1750.95 | 1649.80–1867.40 | −0.03 | −0.170 † | 0.057 | −0.189 † | −0.176 † |
5.08_590.4762 | 5523.24 ± 2915.93 | 4729.03 | 4944.65–6101.82 | 0.012 | 0.012 | −0.048 | 0.196 † | 0.076 |
5.24_524.3729 | 79.82 ± 44.95 | 73.78 | 70.90–88.74 | −0.131 | −0.227 * | −0.042 | −0.009 | −0.205 * |
6.05_507.4033 | 1730.66 ± 846.35 | 1643.39 | 1562.73–1898.59 | −0.129 | −0.239 * | −0.049 | −0.007 | −0.165 |
7.80_535.4360 | 3103.57 ± 871.52 | 3188.12 | 2930.64–3276.50 | −0.045 | −0.219 * | −0.016 | −0.012 | −0.193 † |
9.11_537.5353 | 1320.85 ± 2415.3 | 367.25 | 841.60–1800.10 | 0.116 | 0.138 | −0.040 | 0.237 * | 0.056 |
10.16_564.4132 | 22,252.96 ± 6920.35 | 21,384.68 | 20,879.81–23,626.10 | 0.040 | 0.059 | 0.166 † | −0.042 | −0.024 |
11.09_615.4976 | 8052.28 ± 2152.2 | 8109.02 | 7625.24–8479.32 | −0.097 | −0.205 * | 0.010 | −0.110 | −0.159 |
11.90_565.5672 | 3527.17 ± 6739.33 | 810.42 | 2189.94–4864.40 | 0.105 | 0.111 | −0.023 | 0.189 † | 0.065 |
13.54_617.5134 | 3498.78 ± 819.03 | 3424.17 | 3336.27–3661.30 | −0.069 | −0.202 * | 0.046 | −0.094 | −0.100 |
14.16_579.5402 | 3000.3 ± 1960.65 | 2524.79 | 2611.26–3389.34 | 0.221 * | 0.130 | 0.094 | <0.001 | −0.078 |
14.32_622.6100 | 1033.86 ± 2059.86 | 615.18 | 625.14–1442.59 | 0.116 | 0.214 * | 0.078 | -0.050 | -0.005 |
14.32_661.5383 | 1073.18 ± 403.47 | 1059.45 | 993.12–1153.23 | −0.012 | −0.246 * | 0.076 | −0.008 | −0.117 |
14.78_689.5731 | 1320.5 ± 399.15 | 1305.61 | 1241.30–1399.69 | −0.024 | −0.198 * | 0.078 | −0.029 | −0.122 |
14.78_726.6541 | 1780.26 ± 580.83 | 1676.95 | 1665.01–1895.51 | −0.062 | −0.257 ** | 0.085 | −0.122 | −0.169 † |
15.28_769.6350 | 1077.5 ± 301.88 | 1055.25 | 1017.60–1137.40 | −0.047 | −0.207 * | 0.090 | −0.031 | −0.100 |
15.47_868.7413 | 2594.49 ± 3121.00 | 1585.10 | 1975.22–3213.76 | 0.073 | 0.084 | -0.066 | 0.194 † | 0.103 |
15.56_740.6769 | 113,168.6 ± 64,628.7 | 97,674.80 | 100,344.90–125,992.30 | −0.072 | −0.073 | 0.036 | −0.109 | −0.170 † |
15.71_754.6932 | 7955.3 ± 8201.05 | 5557.18 | 6328.04–9582.57 | −0.095 | −0.031 | 0.115 | −0.092 | −0.181 † |
15.87_771.7168 | 1031.7 ± 764.12 | 810.34 | 880.09–1183.32 | −0.101 | −0.033 | −0.026 | −0.122 | −0.203 * |
16.52_902.8188 | 73,288.14 ± 38,359.7 | 63,212.06 | 65,676.74–80899.53 | 0.030 | 0.078 | 0.026 | 0.071 | 0.206 * |
16.99_907.8456 | 13,893.17 ± 12,526.2 | 9875.59 | 11,407.69–16,378.64 | 0.020 | 0.179 † | −0.026 | 0.059 | 0.060 |
Fatty acids (rt_m/z) | ||||||||
0.93_171.1083 | 506.85 ± 727.61 | 352.22 | 362.48–651.22 | 0.056 | −0.011 | −0.090 | 0.194 † | 0.026 |
0.93_273.1837 | 520.63 ± 459.27 | 468.74 | 429.50–611.76 | −0.019 | −0.007 | −0.107 | 0.254 * | 0.167 † |
0.93_323.1899 | 1142.52 ± 2251.64 | 782.33 | 695.74–1589.29 | −0.015 | 0.037 | −0.136 | 0.227 * | 0.097 |
0.93_407.2098 | 819.08 ± 684.47 | 583.53 | 683.26–954.89 | −0.056 | −0.053 | −0.079 | 0.207 * | 0.087 |
0.98_325.2054 | 3374.41 ± 5100.99 | 2519.93 | 2362.26–4386.56 | 0.012 | 0.022 | −0.082 | 0.244 * | 0.151 |
0.98_327.2215 | 6347.29 ± 5617.66 | 5370.78 | 5232.62–7461.95 | 0.023 | 0.034 | −0.137 | 0.259 ** | 0.174 † |
0.98_329.2375 | 20,982.0 ± 22,331.7 | 16,817.50 | 16,550.94–25,413.12 | −0.014 | −0.045 | −0.167 † | 0.209 * | 0.171 † |
1.02_329.2911 | 362.12 ± 591.52 | 262.90 | 244.75–479.49 | −0.063 | −0.053 | −0.105 | 0.145 | 0.198 * |
1.02_349.2050 | 826.74 ± 584.95 | 612.46 | 710.68–942.81 | −0.027 | 0.007 | −0.039 | 0.209 * | 0.202 * |
1.02_351.2207 | 1652.86 ± 1029.32 | 1338.27 | 1448.62–1857.10 | 0.002 | 0.003 | −0.035 | 0.166 † | 0.170 † |
1.02_353.2364 | 1791.5 ± 1055.21 | 1423.75 | 1582.12–2000.87 | 0.020 | 0.026 | −0.027 | 0.138 | 0.197 * |
1.05_309.2112 | 5346.07 ± 3360.59 | 4604.94 | 4679.25–6012.88 | 0.096 | 0.139 | −0.085 | 0.186 † | 0.262 ** |
1.05_311.2272 | 17,455.4 ± 14,683.2 | 13,376.1 | 14,542.00–20,368.90 | 0.120 | 0.142 | −0.082 | 0.117 | 0.282 ** |
1.05_311.2791 | 324.31 ± 404.65 | 208.03 | 244.02–404.60 | 0.108 | 0.151 | −0.041 | 0.065 | 0.293 ** |
1.05_621.4340 | 905.06 ± 839.31 | 620.07 | 738.52–1071.59 | 0.135 | 0.201 * | −0.059 | 0.179 | 0.297 ** |
1.09_313.2398 | 1556.57 ± 1346.65 | 1192.46 | 1289.37–1823.78 | 0.050 | 0.174 † | −0.147 | 0.216* | 0.289 ** |
1.09_335.2255 | 1289.6 ± 3151.7 | 717.62 | 664.24–1914.97 | 0.068 | 0.110 | 0.013 | 0.105 | 0.219 * |
1.21_293.2166 | 8526.69 ± 6753.36 | 6641.14 | 7186.68–9866.70 | 0.031 | 0.141 | −0.081 | 0.082 | 0.204 * |
1.21_295.2321 | 9446.96 ± 14,642.01 | 5565.58 | 6541.67–12,352.25 | 0.080 | 0.164 | −0.091 | 0.119 | 0.212 * |
1.21_343.2241 | 4241.96 ± 8698.74 | 2599.43 | 2515.94–5967.98 | −0.054 | −0.001 | −0.165 | 0.102 | 0.189 † |
1.48_199.1758 | 3088.96 ± 1347.67 | 2693.66 | 2821.56–3356.37 | −0.012 | −0.085 | 0.039 | −0.243 * | −0.233 * |
1.52_249.1907 | 290.51 ± 208.75 | 257.44 | 249.09–331.93 | 0.034 | 0.057 | 0.201 * | −0.101 | 0.023 |
1.98_227.2067 | 1298.41 ± 862.33 | 990.62 | 1127.30–1469.51 | 0.007 | −0.053 | −0.052 | −0.187 † | −0.250 * |
2.72_255.2380 | 10,336.7 ± 12,253.1 | 6845.15 | 7905.46–12,768.01 | 0.031 | −0.041 | 0.049 | −0.251* | −0.207 * |
2.79_537.4898 | 8384.1 ± 7892.01 | 5767.38 | 6818.16–9950.05 | 0.011 | −0.028 | 0.056 | −0.214 * | −0.192 † |
3.84_283.2688 | 4498.68 ± 4366.43 | 3357.58 | 3632.29–5365.07 | 0.033 | 0.04 | 0.124 | −0.168 † | −0.142 |
9.20_559.4733 | 1283.72 ± 1018.93 | 1028.39 | 1318.82–2128.91 | −0.027 | 0.026 | −0.167 † | 0.058 | −0.051 |
1.71_301.2218 a | 7742.7 ± 7409.11 | 5024.96 | 6272.57–9212.82 | −0.061 | −0.059 | 0.159 | -0.02 | −0.013 |
1.91_327.2374 b | 58,488.0 ± 42,277.3 | 45,997.00 | 50,099.30–66,876.80 | −0.122 | −0.078 | 0.137 | −0.06 | −0.028 |
Bayley-III Score Domain | Category | Compound Description (rt_m/z) | β Estimate | 95% CI | p-Value |
---|---|---|---|---|---|
Cognitive QIC = 51.63 | PBDE | BDE-209 | −0.0068 | −0.0125–−0.0011 | 0.0018 |
Lipid | 15.47_868.7413 | −0.0018 | −0.0026–−0.0009 | 0.0001 | |
Fatty acid | 3.84_283.2688 | 0.0029 | 0.0010–0.0048 | 0.0030 | |
Language QIC = 51.62 | Lipid | 13.54_617.5134 | −0.0136 | −0.0215–−0.0057 | 0.0008 |
Lipid | 15.47_868.7413 | −0.0014 | −0.0023–−0.0006 | 0.0004 | |
Motor QIC = 50.08 | Lipid | 5.08_590.4762 | 0.0022 | 0.0006–0.0037 | 0.0050 |
Lipid | 14.32_661.5383 | 0.0135 | 0.0046–0.0222 | 0.0027 | |
Social−emotional QIC = 48.41 | Lipid | 5.08_590.4762 | 0.0058 | 0.0030–0.0086 | <0.0001 |
Lipid | 16.99_907.8456 | −0.0008 | −0.0013–−0.0002 | 0.0061 | |
Fatty acid | 0.93_171.1083 | −0.0415 | −0.0691–−0.0139 | 0.0032 | |
Fatty acid | 1.02_353.2364 | 0.0122 | 0.0035–0.0208 | 0.0055 | |
Fatty acid | 1.09_335.2255 | −0.0038 | −0.0056–−0.0020 | <0.0001 | |
Adaptive behavior QIC = 50.68 | Lipid | 1.02_348.2749 | −0.0124 | −0.0172–−0.0075 | <0.0001 |
Lipid | 1.05_173.1178 | 0.0885 | 0.0409–0.1362 | 0.0003 | |
Lipid | 14.32_661.5383 | −0.0256 | −0.0430–−0.0082 | 0.0039 |
Compound Description (rt_m/z) [Ion] | Category [Subclass] | Formula | Common Name | Lipid Map Link |
---|---|---|---|---|
1.02_348.2749 [M + H]T5AB | Prenol lipids [PR0104] a | C19H24O6 | gibberellin A1 | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMPR0104170001 |
1.05_173.1178 [M + H]T5AB | Prenol lipids [PR0102] b | C10H20O2 | 1α,3α,4β-p-menthane-3,8-diol | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMPR0102090049 |
5.08_590.4762 [M + H]T5M, T5SE | Glycerophospholipids [GP0102] c | C26H54NO7P | PE(21:0/0:0) | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMGP01020046 |
13.54_617.5134 [M + H]T5L | Glycerolipids [GL0201] d | C39H68O5 | DG(18:2(9Z,12Z)/18:2(9Z,12Z)/0:0) | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMGL02010063 |
14.32_661.5383 [M + H]T5M, T5AB | Sphingolipids [SP0302] e | C36H73N2O6P | PE-Cer(d14:1(4E)/20:0) | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMSP03020005 |
15.47_868.7413 [M + H]T5L | Glycerophospholipids [GP0101] f | C50H94NO8P | PC(20:1(11Z)/22:2(13Z,16Z)) | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMGP01011832 |
16.99_907.8456 [M + H]T5SE | Glycerolipids [GL0301] g | C59H102O6 | TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/20:0)[iso3] | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMGL03010653 |
0.93_171.1083 [M − H]T5SE | Fatty acyls [FA0101] h | C10H20O2 | capric acid | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMFA01010010 |
1.02_353.2364 [M − H]T5SE | Fatty acyls [FA0301] i | C20H34O5 | PGF2alpha | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMFA03010002 |
1.09_335.2255 [M − H]T5SE | Fatty acyls [FA0200] j | C18H28O3 | α-licanic acid | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMFA02000273 |
3.84_283.2688 [M − H]T5C | Fatty acyls [FA0101] h | C18H36O2 | octadecanoic acid | https://www.lipidmaps.org/data/LMSDRecord.php?&LMID=LMFA01010018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-H.; Chao, H.-R.; Hsu, W.-L.; Tsai, C.-C.; Lin, C.-W.; Chen, C.-H. Analysis of Polybrominated Diphenyl Ethers and Lipid Composition in Human Breast Milk and Their Correlation with Infant Neurodevelopment. Int. J. Environ. Res. Public Health 2021, 18, 11501. https://doi.org/10.3390/ijerph182111501
Tsai M-H, Chao H-R, Hsu W-L, Tsai C-C, Lin C-W, Chen C-H. Analysis of Polybrominated Diphenyl Ethers and Lipid Composition in Human Breast Milk and Their Correlation with Infant Neurodevelopment. International Journal of Environmental Research and Public Health. 2021; 18(21):11501. https://doi.org/10.3390/ijerph182111501
Chicago/Turabian StyleTsai, Ming-Hsien, How-Ran Chao, Wen-Li Hsu, Ching-Chung Tsai, Chu-Wen Lin, and Chu-Huang Chen. 2021. "Analysis of Polybrominated Diphenyl Ethers and Lipid Composition in Human Breast Milk and Their Correlation with Infant Neurodevelopment" International Journal of Environmental Research and Public Health 18, no. 21: 11501. https://doi.org/10.3390/ijerph182111501