Driver, Collision and Meteorological Characteristics of Motor Vehicle Collisions among Road Trauma Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Setting, Data Sources and Data Linkage
2.3. Demographic Characteristics
2.4. Pre-Injury Health Characteristics
2.5. Injury Characteristics
2.6. Collision Characteristics
2.7. Weather and Time of Day
2.8. Outcome Variables
2.9. Data Analysis
3. Results
3.1. Cohort Overview
3.2. Latent Classes
3.3. Class Solution Reliability
3.4. Association between Collision Class and Outcomes
4. Discussion
Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabbe, B.J.; Sutherland, A.M.; Hart, M.J.; Cameron, P.A. Population-Based Capture of Long-Term Functional and Quality of Life Outcomes After Major Trauma: The Experiences of the Victorian State Trauma Registry. J. Trauma Inj. Infect. Crit. Care 2010, 69, 532–536. [Google Scholar] [CrossRef]
- Gabbe, B.J.; Simpson, P.M.; Sutherland, A.M.; Wolfe, R.; Fitzgerald, M.C.; Judson, R.; Cameron, P.A. Improved functional outcomes for major trauma patients in a regionalized, inclusive trauma system. Ann. Surg. 2012, 255, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Liu, Z.; McCracken, D.; Nixon, M.R.; et al. Morbidity and mortality from road injuries: Results from the Global Burden of Disease Study 2017. Inj. Prev. 2020, 26, i46–i56. [Google Scholar] [CrossRef] [PubMed]
- Victorian State Trauma Outcomes Registry and Monitoring Group (VSTORM) Victorian State Trauma Registry Annual Report 2018–2019; VSTORM, Department of Epidemiology and Preventive Medicine, Monash University: Melbourne, Australia, 2020.
- Litchfield, F. The Cost of Road Crashes in Australia 2016: An Overview of Safety Strategies; The Australian National University: Canberra, Australia, 2017. [Google Scholar]
- Van Belleghem, G.; Van Deynse, H.; Devos, S.; Huysmans, E.; Hubloue, I.; Lauwaert, D.; Pien, K.; Pouliart, N.; Buyl, R.; Putman, K. Health care utilization after hospitalization following a road traffic accident. Disabil. Rehabil. 2020, 42, 1599–1606. [Google Scholar] [CrossRef]
- Giummarra, M.J.; Black, O.; Smith, P.; Collie, A.; Hassani-Mahmooei, B.; Arnold, C.A.; Gong, J.; Gabbe, B.J. A population-based study of treated mental health and persistent pain conditions after transport injury. Injury 2018, 49, 1787–1795. [Google Scholar] [CrossRef]
- Collie, M.A.; Simpson, A.P.; Cameron, A.P.; Ameratunga, E.S.; Ponsford, J.J.; Lyons, J.R.; Braaf, J.S.; Nunn, J.A.; Harrison, J.J.; Gabbe, J.B. Patterns and predictors of return to work after major trauma: A prospective, population-based registry study. Ann. Surg. 2018, 269, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Kenardy, J.; Heron-Delaney, M.; Warren, J.; Brown, E. The effect of mental health on long-term health-related quality of life following a road traffic crash: Results from the UQ SuPPORT study. Injury 2015, 46, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Rissanen, R.; Berg, H.-Y.; Hasselberg, M. Quality of life following road traffic injury: A systematic literature review. Accid. Anal. Prev. 2017, 108, 308–320. [Google Scholar] [CrossRef]
- Bergman, L.R.; Wångby, M. The person-oriented approach: A short theoretical and practical guide. Eest. Haridusteaduste Ajak. 2014, 2, 29–49. [Google Scholar] [CrossRef] [Green Version]
- Hasselberg, M.; Laflamme, L. How do car crashes happen among young drivers aged 18–20 years? Typical circumstances in relation to license status, alcohol impairment and injury consequences. Accid. Anal. Prev. 2009, 41, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Cameron, P.A.; Gabbe, B.J.; McNeil, J.J.; Finch, C.F.; Smith, K.L.; Cooper, D.J.; Judson, R.; Kossmann, T. The trauma registry as a statewide quality improvement tool. J. Trauma Acute Care Surg. 2005, 59, 1469–1476. [Google Scholar] [CrossRef]
- AMA. AMA 4 Guides to the Evaluation of Permanent Impairment; AMA: Chicago, IL, USA, 1995. [Google Scholar]
- Australian Bureau of Statistics. Australian Standard Classification of Education (ASCED); Australian Bureau of Statistics (ABS): Canberra, Australia, 2001. [Google Scholar]
- Australian Bureau of Statistics. Australian Standard Classification of Occupations (ASCO), 2nd ed.; Australian Bureau of Statistics: Canberra, Australia, 1997. [Google Scholar]
- Pink, B. Information Paper: An Introduction to Socio-Economic Indexes for Areas (SEIFA), 2006; Australian Bureau of Statistics (ABS): Canberra, Australia, 2008. [Google Scholar]
- Department of Health and Aged Care. Measuring Remoteness: Accessibility/Remoteness Index of Australia (ARIA); Commonwealth of Australia: Canberra, Australia, 2001. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Simpson, P.M.; Gabbe, B.J. The prevalence of pre-existing mental health, drug and alcohol conditions in major trauma patients. Aust. Health Rev. 2017, 41, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Williamson, O.D.; Gabbe, B.J.; Sutherland, A.M.; Hart, M.J. Does recall of preinjury disability change over time? Inj. Prev. 2013, 19, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Gabbe, B.J.; Simpson, P.M.; Cameron, P.A.; Ponsford, J.; Lyons, R.A.; Collie, A.; Fitzgerald, M.; Judson, R.; Teague, W.J.; Braaf, S.; et al. Long-term health status and trajectories of seriously injured patients: A population-based longitudinal study. PLoS Med. 2017, 14, e1002322. [Google Scholar] [CrossRef]
- Herd, D.R.; Agent, K.R.; Rizenbergs, R.L. Traffic Accidents: Day Versus Night; Department of Transportation, University of Kentucky: Lexington, KY, USA, 1980. [Google Scholar]
- Ivan, J.N.; Pasupathy, R.K.; Ossenbruggen, P.J. Differences in causality factors for single and multi-vehicle crashes on two-lane roads. Accid. Anal. Prev. 1999, 31, 695–704. [Google Scholar] [CrossRef]
- Pennelly, C.; Reuter, G.W.; Tjandra, S. Effects of Weather on Traffic Collisions in Edmonton, Canada. Atmos. Ocean. 2018, 56, 362–371. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Ly, S.; Charles, C.; Degré, A. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar] [CrossRef] [Green Version]
- EuroQol, G. EuroQol—A new facility for the measurement of health-related quality of life. Health Policy 1990, 16, 199–208. [Google Scholar]
- Wilson, J.T.; Pettigrew, L.E.; Teasdale, G.M. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: Guidelines for their use. J. Neurotrauma 1998, 15, 573–585. [Google Scholar] [CrossRef]
- Viney, R.; Norman, R.; Brazier, J.; Cronin, P.; King, M.T.; Ratcliffe, J.; Street, D. An Australian discrete choice experiment to value EQ-5D health states. Health Econ. 2014, 23, 729–742. [Google Scholar] [CrossRef]
- Dipnall, J.F. A Command to Calculate Index Values for the EQ-5D Quality of Life Instrument for Australian Data; School of Public Health and Preventive Medicine, Monash University: Melbourne, Australia, 2020. [Google Scholar]
- Giummarra, M.J.; Beck, B.; Gabbe, B.J. Classification of road traffic injury collision characteristics using text mining analysis: Implications for road injury prevention. PLoS ONE 2021, 16, e0245636. [Google Scholar] [CrossRef] [PubMed]
- Lanza, S.T.; Dziak, J.J.; Huang, L.; Wagner, A.T.; Collins, L.M. LCA Stata Plugin Users’ Guide (Version 1.2.1); The Methodology Center: University Park, PA, USA, 2018. [Google Scholar]
- Williams, G.; Kibowski, F. Latent Class Analysis and Latent Profile Analysis. In Handbook of Methodological Approaches to Community-Based Research: Qualitative, Quantitative, and Mixed Methods; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Scotto Rosato, N.; Baer, J.C. Latent Class Analysis: A Method for Capturing Heterogeneity. Soc. Work Res. 2012, 36, 61–69. [Google Scholar] [CrossRef]
- Bauer, D.J.; Curran, P.J. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities. Psychol. Methods 2004, 9, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Lenzenweger, M.F. Consideration of the challenges, complications, and pitfalls of taxometric analysis. J. Abnorm. Psychol. 2004, 113, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Fox, J. Applied Regression Analysis and Generalized Linear Models, 3rd ed.; Sage Publications: Los Angeles, CA, USA, 2016. [Google Scholar]
- Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 2007, 16, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; Wiley: New York, NY, USA, 1987; Volume 81. [Google Scholar]
- Ewing, R.; Dumbaugh, E. The Built Environment and Traffic Safety A Review of Empirical Evidence. J. Plan. Lit. 2009, 23, 347–367. [Google Scholar] [CrossRef]
- Theofilatos, A.; Yannis, G. A review of the effect of traffic and weather characteristics on road safety. Accid. Anal. Prev. 2014, 72, 244–256. [Google Scholar] [CrossRef]
- Mills, B.; Andrey, J.; Doberstein, B.; Doherty, S.; Yessis, J. Changing patterns of motor vehicle collision risk during winter storms: A new look at a pervasive problem. Accid. Anal. Prev. 2019, 127, 186–197. [Google Scholar] [CrossRef]
- Ashley, W.S.; Strader, S.; Dziubla, D.C.; Haberlie, A. DRIVING BLIND Weather-Related Vision Hazards and Fatal Motor Vehicle Crashes. Bull. Am. Meteorol. Soc. 2015, 96, 755–778. [Google Scholar] [CrossRef]
- Basagaña, X.; Escalera-Antezana, J.P.; Dadvand, P.; Llatje, Ò.; Barrera-Gómez, J.; Cunillera, J.; Medina-Ramón, M.; Pérez, K. High Ambient Temperatures and Risk of Motor Vehicle Crashes in Catalonia, Spain (2000–2011): A Time-Series Analysis. Environ. Health Perspect. 2015, 123, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.S.; Nguyen, H.; Liebowitz, J.; Agresti, W. Distractions and motor vehicle accidents: Data mining application on fatality analysis reporting system (FARS) data files. Ind. Manag. Data Syst. 2005, 105, 1188–1205. [Google Scholar] [CrossRef]
- Filtness, A.J.; Armstrong, K.A.; Watson, A.; Smith, S.S. Sleep-related crash characteristics: Implications for applying a fatigue definition to crash reports. Accid. Anal. Prev. 2017, 99, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Callinan, S.; Pennay, A.; Livingston, M. Decreasing prevalence of social drinkers in Australia. Addict. Behav. 2017, 67, 20–25. [Google Scholar] [CrossRef]
- Wymond, B.S.; Dickinson, K.M.; Riley, M.D. Alcoholic beverage intake throughout the week and contribution to dietary energy intake in Australian adults. Public Health Nutr. 2016, 19, 2592–2602. [Google Scholar] [CrossRef] [Green Version]
- Scott-Parker, B.; Oviedo-Trespalacios, O. Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different? Accid. Anal. Prev. 2017, 99, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Giummarra, M.J.; Lau, G.; Grant, G.; Gabbe, B.J. A systematic review of the association between fault or blame-related attributions and procedures after transport injury and health and work-related outcomes. Accid. Anal. Prev. 2020, 135, 105333. [Google Scholar] [CrossRef]
- Thompson, J.P.; Baldock, M.R.J.; Mathias, J.L.; Wundersitz, L.N. An examination of the environmental, driver and vehicle factors associated with the serious and fatal crashes of older rural drivers. Accid. Anal. Prev. 2013, 50, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, C.E.; Fernandes, J.R.; Rao, C. Motor vehicle collisions and their demographics: A 5-year retrospective study of the Hamilton-Wentworth Niagara region. J. Forensic Sci. 2008, 53, 709–715. [Google Scholar] [CrossRef] [PubMed]
- van de Schoot, R.; Sijbrandij, M.; Winter, S.D.; Depaoli, S.; Vermunt, J.K. The GRoLTS-checklist: Guidelines for reporting on latent trajectory studies. Struct. Equ. Model. 2017, 24, 451–467. [Google Scholar] [CrossRef] [Green Version]
Included (n = 2539) | Lost to Follow-Up (n = 196) | |||
---|---|---|---|---|
n (%) | n (%) | p-Value | ||
Age (years) | 15 to 24 | 496 (19.5) | 45 (23.0) | <0.001 |
25 to 34 | 404 (15.9) | 60 (30.6) | ||
35 to 44 | 415 (16.3) | 31 (15.8) | ||
45 to 54 | 338 (13.3) | 13 (6.6) | ||
55 to 64 | 306 (12.1) | 16 (8.2) | ||
65 to 74 | 263 (10.4) | 20 (10.2) | ||
75+ | 317 (12.5) | 11 (5.6) | ||
Sex | Male | 1607 (63.3) | 136 (69.4) | 0.087 |
Female | 932 (36.7) | 60 (30.6) | ||
Preferred language, English a | No | 59 (2.9) | 14 (8.8) | <0.001 |
Yes | 1981 (97.1) | 145 (91.2) | ||
Residential area b | Regional and remote | 947 (37.7) | 56 (30.3) | 0.043 |
Major cities | 1564 (62.3) | 129 (69.7) | ||
IRSAD (quintile) b | 1, highest disadvantage | 522 (20.8) | 62 (33.5) | 0.002 |
2 | 527 (21.0) | 33 (17.8) | ||
3 | 527 (21.0) | 30 (16.2) | ||
4 | 462 (18.4) | 33 (17.8) | ||
5, lowest disadvantage | 473 (18.8) | 27 (14.6) | ||
Education level c | University | 377 (15.7) | <5 | <0.001 |
Completed high school | 365 (15.2) | <5 | ||
Advanced diploma | 796 (33.1) | <5 | ||
Did not complete high school | 868 (36.1) | 187 (97.4) | ||
CCI conditions | Yes | 1830 (72.1) | 148 (75.5) | 0.300 |
No | 709 (27.9) | 48 (24.5) | ||
Blood alcohol ≥ 0.05 d | No | 1178 (85.1) | 75 (70.8) | <0.001 |
Yes | 206 (14.9) | 31 (29.2) | ||
Pre-injury mental health condition e | No | 2272 (90.2) | 180 (91.8) | 0.460 |
Yes | 246 (9.8) | 16 (8.2) | ||
Pre-injury substance use condition e | No | 2271 (90.2) | 165 (84.2) | 0.008 |
Yes | 247 (9.8) | 31 (15.8) | ||
Pre-injury disability f | No | 1918 (83.1) | <5 | 0.650 |
Yes | 389 (16.9) | <5 | ||
Occupation skill level/status g | Professionals | 454 (18.1) | <5 | 0.600 |
Trade/advanced clerical | 412 (16.5) | <5 | ||
Intermediate | 360 (14.4) | <5 | ||
Elementary/labourers | 274 (11.0) | <5 | ||
Not working | 864 (34.5) | <5 | ||
Studying | 138 (5.5) | <5 | ||
Fault attribution | Another at fault | 443 (17.4) | 17 (8.7) | <0.001 |
Claim another at fault | 125 (4.9) | 6 (3.1) | ||
No/deny other at fault | 1432 (56.4) | 111 (56.6) | ||
Unknown if other at fault | 539 (21.2) | 62 (31.6) | ||
ISS (tertiles) | 1 to 10 | 862 (34.0) | 81 (41.3) | 0.036 |
11 to 17 | 952 (37.5) | 74 (37.8) | ||
18 to 75 | 725 (28.6) | 41 (20.9) | ||
Injured body regions | Orthopaedic injuries | 650 (25.6) | 59 (30.1) | 0.250 |
Chest/abdominal injuries | 993 (39.1) | 65 (33.2) | ||
Neurotrauma | 311 (12.2) | 21 (10.7) | ||
Other | 585 (23.0) | 51 (26.0) |
Class 1 (n = 663, 30.2%) | Class 2 (n = 600, 25.1%) | Class 3 (n = 711, 25.9%) | Class 4 (n = 365, 14.4%) | Class 5 (n = 128, n = 4.4%) | |
---|---|---|---|---|---|
Another at fault | 0.21 | 0.04 | 0.09 | 0.09 | 1.00 |
Multi-vehicle collision | 1.00 | 0.03 | 0.40 | 0.52 | 1.00 |
Others seriously injured | 0.21 | 0.10 | 0.14 | 0.14 | 0.38 |
BAC ≥ 0.05 | 0.02 | 0.12 | 0.36 | 0.16 | 0.00 |
Inclement weather | 0.19 | 0.24 | 0.33 | 0.28 | 0.30 |
Regional/remote location | 0.32 | 0.61 | 0.37 | 0.49 | 0.08 |
Time of week and day | |||||
Weekend | 0.26 | 0.25 | 0.40 | 0.25 | 0.23 |
Before sunrise | 0.00 | 0.00 | 0.00 | 0.19 | 0.09 |
After sunrise | 0.00 | 0.00 | 0.00 | 0.27 | 0.04 |
Daytime | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 |
Before sunset | 0.00 | 0.00 | 0.00 | 0.29 | 0.18 |
After sunset | 0.00 | 0.00 | 0.00 | 0.25 | 0.15 |
Evening | 0.00 | 0.00 | 1.00 | 0.00 | 0.55 |
EQ-5D Summary Score (n = 2532) | Independent Function (GOS-E; n = 2537) | Return to Work (n = 1529) | |
---|---|---|---|
Mean Difference, adj. (95%CI) | AOR (95%CI) | AOR (95%CI) | |
Collision class | |||
1 | reference | 1.00 | 1.00 |
2 | 0.02 (−0.01, 0.05) | 1.06 (0.71, 1.58) | 1.81 (0.91, 3.59) |
3 | 0.00 (−0.02, 0.03) | 1.09 (0.71, 1.67) | 1.55 (0.77, 3.13) |
4 | 0.02 (−0.01, 0.05) | 1.09 (0.69, 1.73) | 1.66 (0.79, 3.47) |
5 | −0.03 (−0.07, 0.01) | 0.93 (0.45, 1.96) | 0.37 (0.13, 1.05) |
Age (years) | |||
15 to 24 | reference | 1.00 | 1.00 |
25 to 34 | −0.10 (−0.13, −0.07) | 0.24 (0.15, 0.39) | 0.10 (0.05, 0.19) |
35 to 44 | −0.11 (−0.14, −0.08) | 0.21 (0.13, 0.34) | 0.07 (0.04, 0.15) |
45 to 54 | −0.11 (−0.15, −0.08) | 0.21 (0.12, 0.35) | 0.15 (0.07, 0.29) |
55 to 64 | −0.08 (−0.12, −0.05) | 0.32 (0.19, 0.55) | 0.09 (0.04, 0.20) |
65 to 74 | −0.04 (−0.08, 0.00) | 0.66 (0.36, 1.21) | 0.05 (0.01, 0.15) |
75+ | −0.03 (−0.07, 0.01) | 0.55 (0.29, 1.02) | 0.10 (0.02, 0.49) |
Sex | |||
Male | reference | 1.00 | 1.00 |
Female | −0.04 (−0.05, −0.02) | 0.86 (0.64, 1.14) | 0.66 (0.42, 1.03) |
Preferred language, English | |||
No | reference | 1.00 | 1.00 |
Yes | 0.04 (−0.01, 0.10) | 1.53 (0.60, 3.89) | 3.15 (0.61, 16.17) |
Residential area | |||
Regional and remote areas | reference | 1.00 | 1.00 |
Major cities | −0.02 (−0.04, 0.00) | 0.78 (0.57, 1.06) | 0.76 (0.48, 1.18) |
IRSAD (quintile) | |||
1, highest disadvantage | reference | 1.00 | 1.00 |
2 | 0.03 (0.01, 0.06) | 1.28 (0.84, 1.95) | 2.71 (1.49, 4.91) |
3 | 0.03 (0.01, 0.06) | 1.23 (0.82, 1.85) | 1.90 (1.04, 3.45) |
4 | 0.04 (0.01, 0.07) | 1.70 (1.10, 2.62) | 3.23 (1.68, 6.20) |
5, highest advantage | 0.06 (0.03, 0.09) | 1.95 (1.24, 3.08) | 5.39 (2.54, 11.41) |
Occupation skill level/status | |||
Elementary/labourers | reference | 1.00 | 1.00 |
Intermediate | 0.02 (−0.01, 0.05) | 2.14 (1.21, 3.79) | 4.16 (2.18, 7.92) |
Trade/advanced clerical | 0.01 (−0.02, 0.04) | 1.98 (1.14, 3.44) | 3.99 (2.08, 7.66) |
Professionals | 0.04 (0.00, 0.07) | 2.57 (1.48, 4.45) | 20.20 (9.36, 43.60) |
Not working | −0.03 (−0.07, 0.00) | 8.21 (4.72, 14.28) | n/a |
Education level | |||
Did not complete high school | reference | 1.00 | 1.00 |
Advanced diploma | 0.03 (0.00, 0.05) | 1.03 (0.74, 1.44) | 1.67 (0.98, 2.83) |
Completed high school | 0.03 (0.01, 0.06) | 1.50 (0.99, 2.29) | 3.72 (1.86, 7.44) |
University | 0.05 (0.03, 0.08) | 2.31 (1.51, 3.54) | 8.11 (3.79, 17.35) |
CCI conditions | |||
Yes | reference | 1.00 | 1.00 |
No | 0.03 (0.01, 0.05) | 1.97 (1.39, 2.78) | 6.45 (3.53, 11.77) |
Pre-injury mental health condition | |||
No | reference | 1.00 | 1.00 |
Yes | 0.00 (−0.03, 0.03) | 0.67 (0.41, 1.10) | 0.86 (0.41, 1.80) |
Pre-injury substance use condition | |||
No | reference | 1.00 | 1.00 |
Yes | 0.00 (−0.04, 0.03) | 1.32 (0.81, 2.15) | 1.24 (0.55, 2.82) |
Pre-injury disability | |||
No | reference | 1.00 | 1.00 |
Yes | −0.05 (−0.08, −0.03) | 0.41 (0.27, 0.61) | 0.44 (0.21, 0.93) |
Fault attribution | |||
Another at fault | reference | 1.00 | 1.00 |
Claim another at fault | −0.03 (−0.07, 0.02) | 0.93 (0.47, 1.88) | 0.26 (0.10, 0.70) |
No other at fault | 0.02 (−0.01, 0.05) | 1.97 (1.25, 3.12) | 0.72 (0.37, 1.37) |
Deny another at fault | 0.00 (−0.07, 0.06) | 1.19 (0.41, 3.43) | 1.57 (0.38, 6.40) |
Unknown if another at fault | 0.00 (−0.03, 0.03) | 1.56 (0.94, 2.59) | 0.93 (0.46, 1.88) |
ISS (tertiles) | |||
1–10 | reference | 1.00 | 1.00 |
11–17 | −0.04 (−0.06, −0.02) | 0.46 (0.31, 0.69) | 0.23 (0.13, 0.41) |
18–75 | −0.10 (−0.13, −0.07) | 0.15 (0.09, 0.25) | 0.04 (0.02, 0.09) |
Injured body regions | |||
Orthopaedic injuries only | reference | 1.00 | 1.00 |
Chest/abdominal injuries | 0.06 (0.03, 0.08) | 3.30 (2.06, 5.29) | 5.70 (2.77, 11.73) |
Head injury | 0.10 (0.07, 0.14) | 4.48 (2.45, 8.17) | 13.07 (5.22, 32.73) |
Spinal cord injury | −0.20 (−0.28, −0.12) | 0.05 (0.00, 0.75) | 0.13 (0.02, 0.95) |
Other/multi-trauma injuries | 0.01 (−0.01, 0.04) | 1.37 (0.92, 2.03) | 1.95 (1.11, 3.43) |
Months post-injury | |||
6 months | reference | 1.00 | 1.00 |
12 months | 0.02 (0.01, 0.03) | 1.57 (1.31, 1.89) | 2.52 (1.94, 3.27) |
24 months | 0.01 (0.00, 0.02) | 1.97 (1.60, 2.41) | 6.45 (3.53, 11.77) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giummarra, M.J.; Xu, R.; Guo, Y.; Dipnall, J.F.; Ponsford, J.; Cameron, P.A.; Ameratunga, S.; Gabbe, B.J. Driver, Collision and Meteorological Characteristics of Motor Vehicle Collisions among Road Trauma Survivors. Int. J. Environ. Res. Public Health 2021, 18, 11380. https://doi.org/10.3390/ijerph182111380
Giummarra MJ, Xu R, Guo Y, Dipnall JF, Ponsford J, Cameron PA, Ameratunga S, Gabbe BJ. Driver, Collision and Meteorological Characteristics of Motor Vehicle Collisions among Road Trauma Survivors. International Journal of Environmental Research and Public Health. 2021; 18(21):11380. https://doi.org/10.3390/ijerph182111380
Chicago/Turabian StyleGiummarra, Melita J., Rongbin Xu, Yuming Guo, Joanna F. Dipnall, Jennie Ponsford, Peter A. Cameron, Shanthi Ameratunga, and Belinda J. Gabbe. 2021. "Driver, Collision and Meteorological Characteristics of Motor Vehicle Collisions among Road Trauma Survivors" International Journal of Environmental Research and Public Health 18, no. 21: 11380. https://doi.org/10.3390/ijerph182111380