Increasing Heart Rate Variability through Progressive Muscle Relaxation and Breathing: A 77-Day Pilot Study with Daily Ambulatory Assessment
Abstract
:1. Introduction
1.1. Resonance Frequency Training
1.2. Progressive Muscle Relaxation
1.3. Present Study
2. Methods
2.1. Participants
2.2. Ethical Consideration
2.3. Heart Rate Variability Measurement
2.4. Intervention Groups and Active Control Group
2.4.1. Average Resonance Frequency Training
2.4.2. Progressive Muscle Relaxation
2.4.3. Dual-Task for the Active Control Group
2.5. Data Analyzing and Processing
3. Results
4. Discussion
Some Further Proposals for Subsequent Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Zhang, Y. Heart rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Appl. Psychophysiol. 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Nes, L.S. Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychol. Sci. 2007, 18, 275–281. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Public Health Front. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Gevirtz, R. The promise of heart rate variability biofeedback: Evidence-based applications. Biofeedback 2013, 41, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.M. Effects of a cardiorespiratory synchronization training mobile application on heart rate variability and electroencephalography in healthy adults. Int. J. Psychophysiol. 2018, 134, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Schumann, A.; Köhler, S.; Brotte, L.; Bär, K.-J. Effect of an eight-week smartphone-guided HRV-biofeedback intervention on autonomic function and impulsivity in healthy controls. Physiol. Meas. 2019, 40, 064001. [Google Scholar] [CrossRef]
- Lehrer, P. How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms. Biofeedback 2013, 41, 26–31. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B. Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Appl. Psychophysiol. Biofeedback 2000, 25, 177–191. [Google Scholar] [CrossRef]
- Vaschillo, E.G.; Vaschillo, B.; Lehrer, P.M. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl. Psychophysiol. Biofeedback 2006, 31, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Yasuma, F.; Hayano, J.I. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest 2004, 125, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths/minute. Clin. Neurophysiol. 2019, 131, 676–693. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How breath-control can change your life: A systematic review on psycho-physiological correlates of slow breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.-E.; Scardella, A.; Siddique, M.; Habib, R.H. Biofeedback treatment for asthma. Chest 2004, 126, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Dao, T.K.; Farmer, L.; Sutherland, R.J.; Gevirtz, R. Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): A pilot study. Appl. Psychophysiol. Biofeedback 2011, 36, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Zucker, T.L.; Samuelson, K.W.; Muench, F.; Greenberg, M.A.; Gevirtz, R.N. The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: A pilot study. Appl. Psychophysiol. Biofeedback 2009, 34, 135–143. [Google Scholar] [CrossRef]
- Karavidas, M.K.; Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Marin, H.; Buyske, S.; Malinovsky, I.; Radvanski, D.; Hassett, A. Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl. Psychophysiol. Biofeedback 2007, 32, 19–30. [Google Scholar] [CrossRef]
- Siepmann, M.; Aykac, V.; Unterdörfer, J.; Petrowski, K.; Mueck-Weymann, M. A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects. Appl. Psychophysiol. Biofeedback 2008, 33, 195–201. [Google Scholar] [CrossRef]
- Tatschl, J.M.; Hochfellner, S.M.; Schwerdtfeger, A.R. Implementing mobile HRV biofeedback as adjunctive therapy during inpatient psychiatric rehabilitation facilitates recovery of depressive symptoms and enhances autonomic functioning short-term: A 1-year pre–post-intervention follow-up pilot study. Front. Neurosci. 2020, 14, 738. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.-E.; Eckberg, D.L.; Edelberg, R.; Shih, W.J.; Lin, Y.; Kuusela, T.A.; Tahvanainen, K.U.O.; et al. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom. Med. 2003, 65, 796–805. [Google Scholar] [CrossRef] [Green Version]
- Steffen, P.R.; Austin, T.; DeBarros, A.; Brown, T. The impact of resonance frequency breathing on measures of heart rate variability, blood pressure, and mood. Front. Public Health 2017, 5, 222. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, E. Progressive Relaxation; University of Chicago Press: Chicago, IL, USA, 1938. [Google Scholar]
- Pawlow, L.A.; Jones, G.E. The impact of abbreviated progressive muscle relaxation on salivary cortisol. Biol. Psychol. 2002, 60, 1–16. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Ray, M.; Saldanha, D.; Bandopadhyay, A. Effect of progressive muscle relaxation in female health care professionals. Ann. Med. Health Sci. Res. 2014, 4, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Seckendorff, R.V. Auswirkungen Eines 6-Wöchigen Entspannungstrainings (Progressive Muskelrelaxation Nach Jacobson) Auf Blutdruck, Her-Zfrequenz Und Herzratenvariabilität Sowie Psychologische Parameter (Stresserleben, Angst, Ärger) Bei Gesunden Pro-banden [Effects of a 6-Week Relaxation Training (Progressive Muscle Relaxation According to Jacobson) on Blood Pressure, Heart Rate and Heart Rate Variability as Well as Psychological Parameters (Stress, Anxiety, Anger) in Healthy Individuals]. Ph.D. Thesis, Medizinischen Fakultät Charité Universitätsmedizin, Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence diagram of physiological and environmental factors affecting heart rate variability: An extended literature overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 2018, 4, e01002. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, K.; Hagemann, D.; Naumann, E.; Schachinger, H.; Schulz, A. Stability of heart rate variability indices reflecting parasympathetic activity. J. Psychophysiol. 2012, 49, 672–682. [Google Scholar] [CrossRef] [PubMed]
- De Simoni, C.; von Bastian, C.C. Working memory updating and binding training: Bayesian evidence supporting the absence of transfer. J. Exp. Psychol. Gen. 2018, 147, 829–858. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart rate variability and cardiac vagal tone in psychophysiological research–recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Abhishekh, H.A.; Nisarga, P.; Kisan, R.; Meghana, A.; Chandran, S.; Raju, T.; Sathyaprabha, T.N. Influence of age and gender on autonomic regulation of heart. J. Clin. Monit. Comput. 2013, 27, 259–264. [Google Scholar] [CrossRef]
- Bonnemeier, H.; Wiegand, U.K.H.; Brandes, A.; Kluge, N.; Katus, H.A.; Richardt, G.; Potratz, J. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: Differing effects of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol. 2003, 14, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Karason, K.; Mølgaard, H.; Wikstrand, J.; Sjöström, L. Heart rate variability in obesity and the effect of weight loss. Am. J. Cardiol. 1999, 83, 1242–1247. [Google Scholar] [CrossRef]
- Kok, B.E.; Coffey, K.A.; Cohn, M.A.; Catalino, L.I.; Vacharkulksemsuk, T.; Algoe, S.B.; Brantley, M.; Fredrickson, B.L. How positive emotions build physical health: Perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychol. Sci. 2013, 24, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Kok, B.E.; Fredrickson, B.L. Upward spirals of the heart: Autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biol. Psychol. 2010, 85, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Lü, W.; Wang, Z.; Liu, Y. A pilot study on changes of cardiac vagal tone in individuals with low trait positive affect: The effect of positive psychotherapy. Int. J. Psychophysiol. 2013, 88, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Oveis, C.; Cohen, A.B.; Gruber, J.; Shiota, M.N.; Haidt, J.; Keltner, D. Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion 2009, 9, 265–270. [Google Scholar] [CrossRef]
- Kuhl, J. Action versus state orientation: Psychometric properties of the Action Control Scale (ACS-90). In Volition and Personality: Action versus State Orientation; Kuhl, J., Beckmann, J., Eds.; Hogrefe & Huber Publishers: Göttingen, Germany, 1994; pp. 47–59. [Google Scholar]
- Dedoncker, J.; Vanderhasselt, M.-A.; Ottaviani, C.; Slavich, G.M. Mental health during the COVID-19 pandemic and beyond: The importance of the vagus nerve for biopsychosocial resilience. Neurosci. Biobehav. Rev. 2021, 125, 1–10. [Google Scholar] [CrossRef] [PubMed]
Dual-Task | PMR | RFT | |
---|---|---|---|
M | 64.65 | 61.22 | 74.21 |
SD | 29.62 | 33.95 | 36.00 |
max | 162.34 | 204.52 | 203.71 |
min | 11.50 | 6.47 | 7.19 |
n (measurements) | 501 | 531 | 522 |
Predictors | Estimates | CI | p |
---|---|---|---|
(Intercept) | 4.63 | 2.36–6.90 | <0.001 |
Day | −0.02 | −0.08–0.05 | 0.626 |
PMR | −0.24 | −0.55–0.07 | 0.126 |
RFT | 0.14 | −0.21–0.48 | 0.433 |
Age | −0.06 | −0.14–0.03 | 0.204 |
Sex (men) | 0.01 | −0.52–0.55 | 0.959 |
BMI | 0.03 | −0.03–0.09 | 0.301 |
AOD/SOD | −0.01 | −0.05–0.03 | 0.596 |
AOF/SOF | 0.02 | −0.04–0.07 | 0.619 |
Day × PMR | 0.10 | 0.01–0.20 | 0.028 |
Day × RFT | 0.01 | −0.09–0.10 | 0.911 |
Random Effects | |||
Variance | Standard Deviation | Correlation | |
Participant | 0.0319 | 0.1787 | |
Day | 0.0010 | 0.0315 | −0.15 |
AR1 | 0.0546 | 0.2336 | 0.77 |
Residual | 0.1737 | 0.4168 | |
AIC | BIC | Log Likelihood | |
Model Statistics | 2103.8 | 2194.7 | −1034.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groß, D.; Kohlmann, C.-W. Increasing Heart Rate Variability through Progressive Muscle Relaxation and Breathing: A 77-Day Pilot Study with Daily Ambulatory Assessment. Int. J. Environ. Res. Public Health 2021, 18, 11357. https://doi.org/10.3390/ijerph182111357
Groß D, Kohlmann C-W. Increasing Heart Rate Variability through Progressive Muscle Relaxation and Breathing: A 77-Day Pilot Study with Daily Ambulatory Assessment. International Journal of Environmental Research and Public Health. 2021; 18(21):11357. https://doi.org/10.3390/ijerph182111357
Chicago/Turabian StyleGroß, Daniel, and Carl-Walter Kohlmann. 2021. "Increasing Heart Rate Variability through Progressive Muscle Relaxation and Breathing: A 77-Day Pilot Study with Daily Ambulatory Assessment" International Journal of Environmental Research and Public Health 18, no. 21: 11357. https://doi.org/10.3390/ijerph182111357