Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley
Abstract
:1. Introduction
Study Area
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Parameters and Groundwater Quality
3.2. Geochemical Facies and Groundwater Hydrogeochemistry
3.3. Excitation-Emission Matrix (3D Fluorescence Spectra)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalla, G.; Swamee, P.K.; Kumar, A.; Bansal, A. Assessment of groundwater quality near municipal solid waste landfill by an Aggregate Index Method. Int. J. Environ. Sci. 2012, 2, 1492–1503. [Google Scholar]
- Ettler, V.; Mihaljevič, M.; Matura, M.; Skalová, M.; Šebek, O.; Bezdička, P. Temporal Variation of Trace Elements in Waters Polluted by Municipal Solid Waste Landfill Leachate. Bull. Environ. Contam. Toxicol. 2008, 80, 274–279. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Kusena, W.; Beckedahl, H. An overview of the city of Gweru, Zimbabwe’s water supply chain capacity: Towards a demand-oriented approach in domestic water service delivery. GeoJournal 2016, 81, 231–242. [Google Scholar] [CrossRef]
- Shen, Y.; Chapelle, F.H.; Strom, E.W.; Benner, R. Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 2015, 122, 61–78. [Google Scholar] [CrossRef]
- Fuentes-Rivas, R.M.; Ramos-Leal, J.A.; Jiménez-Moleón, M.D.C.; Esparza-Soto, M. Caracterización de la materia orgánica disuelta en agua subterránea del Valle de Toluca mediante espectrofotometría de fluorescencia 3D. Rev. Int. Contam. Ambient. 2015, 31, 253–264. [Google Scholar]
- Fuentes-Rivas, R.M.; Santa Cruz de Leon, G.; Ramos-Leal, J.A.; MoránRamírez, J.; Martín-Romero, F. Characterization of dissolved organic matter in an agricultural wastewater-irrigated soil, in semiarid Mexico. Rev. Int. Contam. Ambient. 2017, 33, 575–590. Available online: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.04.03 (accessed on 16 June 2021). [CrossRef]
- Fonseca-Montes de Oca, R.M.G.; Ramos-Leal, J.A.; Morán-Ramírez, J.; Esquivel-Martínez, J.M.; Álvarez-Bastida, C.; Fuentes-Rivas, R.M. Hydrogeochemical Characterization and Assessment of Contamination by Inorganic and Organic Matter in the Groundwater of a Volcano-Sedimentary Aquifer. Bull. Environ. Contam. Toxicol. 2020, 104, 520–531. [Google Scholar] [CrossRef]
- Sefa-Ntiri, B.; Kwakye-Awuah, B.; Edziah, R.; Anderson, B.; Armah, F.; Mensah-Amoah, P.; Sackey, S.S.; Sam, F.; Akyea, A.G.; Yunus, S.; et al. Dissolved organic matter in hand-dug well water as groundwater quality indicator: Assessment using laser-induced fluorescence spectroscopy and multivariate statistical techniques. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, F.H.; Shen, Y.; Strom, E.W.; Benner, R. The removal kinetics of dissolved organic matter and the optical clarity of groundwater. Hydrogeol. J. 2016, 24, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.J.; Whitaker, F.F.; Anesio, A.M.; Naish, M.; Reynolds, D.M.; Evans, E.L. Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer. Biogeochemistry 2016, 129, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, M.; Wang, G.; Sun, X.; Xi, B.; Hu, Z. Compositional and chemical characteristics of dissolved organic matter in various types of cropped and natural Chinese soils. Chem. Biol. Technol. Agric. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Varrault, G.; Parlanti, E.; Matar, Z.; Garnier, J.; Nguyen, P.T.; Derenne, S.; Rocher, V.; Muresan, B.; Louis, Y.; Soares-Pereira, C.; et al. Aquatic Organic Matter in the Seine Basin: Sources, Spatio-Temporal Variability, Impact of Urban Discharges and Influence on Micro-pollutant Speciation. In The Handbook of Environmental Chemistry; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 217–242. [Google Scholar]
- Jylhä-Ollila, M.; Laine-Kaulio, H.; Niinikoski-Fusswinkel, P.; Leveinen, J.; Koivusalo, H. Water quality changes and organic matter removal using natural bank infiltration at a boreal lake in Finland. Hydrogeol. J. 2020, 28, 1343–1357. [Google Scholar] [CrossRef] [Green Version]
- Rikta, S.Y.; Tareq, S.M.; Uddin, M.K. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate. Appl. Water Sci. 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Mavakala, B.K.; Le Faucheur, S.; Mulaji, C.K.; Laffite, A.; Devarajan, N.; Biey, E.M.; Giuliani, G.; Otamonga, J.-P.; Kabatusuila, P.; Mpiana, P.T.; et al. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manag. 2016, 55, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Naveen, B.; Mahapatra, D.M.; Sitharam, T.; Sivapullaiah, P.; Ramachandra, T. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut. 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Oyeku, O.; Eludoyin, A. Heavy metal contamination of groundwater resources in a Nigerian urban settlement. Afr. J. Environ. Sci. Technol. 2010, 4, 201–214. [Google Scholar]
- Abu Qdais, H.A. Selection of landfill leachate management strategy using decision support system. J. Solid Waste Technol. Manag. 2010, 36, 246–257. [Google Scholar] [CrossRef]
- Samadder, S.; Prabhakar, R.; Khan, D.; Kishan, D.; Chauhan, M. Analysis of the contaminants released from municipal solid waste landfill site: A case study. Sci. Total. Environ. 2017, 580, 593–601. [Google Scholar] [CrossRef]
- Adamcová, D.; Radziemska, M.; Ridošková, A.; Barton, S.; Pelcová, P.; Elbl, J.; Kynický, J.; Brtnický, M.; Vaverková, M.D. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 2017, 185, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Boateng, T.K.; Opoku, F.; Akoto, O. Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site, Kumasi. Appl. Water Sci. 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Talalaj, I.A.; Biedka, P. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites. Environ. Sci. Pollut. Res. 2016, 23, 24601–24613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przydatek, G.; Kanownik, W. Impact of small municipal solid waste landfill on groundwater quality. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Raju, N.J.; Gossel, W.; Wycisk, P. Assessment of pollution potential of leachate from the municipal solid waste disposal site and its impact on groundwater quality, Varanasi environs, India. Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Fuentes-Rivas, R.M.; Martínez-Alva, G.; Ramos-Leal, J.A.; De León, G.S.C.; Moran-Ramírez, J.; De Oca, R.M.G.F.-M. Assessment of contamination by anthropogenic dissolved organic matter in the aquifer that underlies the agricultural area. Environ. Sci. Pollut. Res. 2020, 27, 45859–45873. [Google Scholar] [CrossRef]
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater; Joint Editorial Board: Washington, DC, USA, 1992. [Google Scholar]
- Westerhoff, P.; Chen, W.; Esparza, M. Fluorescence Analysis of a Standard Fulvic Acid and Tertiary Treated Wastewater. J. Environ. Qual. 2001, 30, 2037–2046. [Google Scholar] [CrossRef]
- WHO World Health Organisation. Quidelines for Drinking Water Quality, 4rd ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- NOM-127. Norma Oficial Mexicana NOM-127-SSA1–1994. In “Salud Ambiental, Agua Para uso y Consumo Humano–Límites Permisibles de Calidad y Tratamientos a que Debe Someterse el Agua Para su Potabilización”; Secretaría de Salud de Mexico: Mexico City, Mexico, 1994; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=22/11/2000 (accessed on 18 June 2021).
- Kiros Gebremichail Gebresilasie, K.G.; Berhe, G.G.; Tesfay, A.H.; Gebre, S.E. Assessment of Some Physicochemical Parameters and Heavy Metals in Hand-Dug Well Water Samples of Kafta Humera Woreda, Tigray, Ethiopia. Int. J. Anal. Chem. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Christine, A.A.; Kibet, J.K.; Kiprop, A.K.; Were, M.L. The assessment of bore-hole water quality of Kakamega County, Kenya. Appl. Water Sci. 2018, 8, 47. [Google Scholar] [CrossRef]
- Davoodi, R.; Pirsaheb, M.; Karimyan, K.; Gupta, V.K.; Takhtshahi, A.R.; Sharafi, H.; Moradi, M. Data for distribution of various species of fecal coliforms in urban, rural and private drinking water sources in ten years period—A case study: Kermanshah, Iran. Data Brief 2018, 18, 1544–1550. [Google Scholar] [CrossRef]
- Kumar, A.R.; Riyazuddin, P. Seasonal variation of redox species and redox potentials in shallow groundwater: A comparison of measured and calculated redox potentials. J. Hydrol. 2012, 444-445, 187–198. [Google Scholar] [CrossRef]
- Kothari, V.; Vij, S.; Sharma, S.; Gupta, N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar] [CrossRef]
- Asit Kumar, B.; Surajit, C. Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environ. Res. 2015, 87, 607–617. [Google Scholar] [CrossRef]
- Cuoco, E.; Darrah, T.H.; Buono, G.; Eymold, W.K.; Tedesco, D. Differentiating natural and anthropogenic impacts on water quality in a hydrothermal coastal aquifer (Mondragone Plain, Southern Italy). Environ. Earth Sci. 2015, 73, 7115–7134. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Arocena, J.M.; Thring, R.W. Heavy metals and nutrients (carbon, nitrogen, and phosphorus) in sediments: Relationships to land uses, environmental risks, and management. Environ. Sci. Pollut. Res. 2017, 24, 7403–7412. [Google Scholar] [CrossRef] [PubMed]
- Mockler, E.M.; Deakin, J.; Archbold, M.; Gill, L.; Daly, D.; Bruen, M. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Sci. Total. Environ. 2017, 601–602, 326–339. [Google Scholar] [CrossRef]
- Singh, S.; Ghosh, N.C.; Krishan, G.; Kumar, S.; Gurjar, S.; Sharma, M.K. Development of indices for surface and ground water quality assessment and characterization for Indian conditions. Environ. Monit. Assess. 2019, 191, 182. [Google Scholar] [CrossRef]
- Prasad, M.; Sunitha, V.; Reddy, Y.S.; Suvarna, B.; Reddy, B.M.; Reddy, M.R. Data on water quality index development for groundwater quality assessment from Obulavaripalli Mandal, YSR district, A.P India. Data Brief 2019, 24, 103846. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Mifflin, M.D. “Region 5, Great Basin”. In The Geology of North America, V. 0–2. Hydrogeology; Back, W., Rosenhein, J.S., Seaber, P.R., Eds.; Geological Society of America: Boulder, CO, USA, 1988. [Google Scholar]
- Nematollahi, M.J.; Ebrahimi, P.; Ebrahimi, M. Evaluating Hydrogeochemical Processes Regulating Groundwater Quality in an Unconfined Aquifer. Environ. Process. 2016, 3, 1021–1043. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Kumari, R.; Datta, P.S.; Rao, M.S.; Mukherjee, S.; Azad, C. Anthropogenic perturbations induced groundwater vulnerability to pollution in the industrial Faridabad District, Haryana, India. Environ. Earth Sci. 2018, 77, 187. [Google Scholar] [CrossRef]
- Mostofa, K.M.G.; Liu, C.-Q.; Mottaleb, M.A.; Wan, G.; Ogawa, H.; Vione, D.; Yoshioka, T.; Wu, F. Dissolved Organic Matter in Natural Waters. In Environmental Science and Engineering; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; pp. 1–137. [Google Scholar]
Sample | pH | ORP | Tw | EC | TDS | Hard | BOD | COD | DO | PO43− | Cl − | N-NO3 − | NH4+ | SO42− | HCO3− | Na+ | Mg2+ | K+ | Ca2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | μS/cm | mgL−1 | |||||||||||||||||
WHO | 6.5–8.5 | * | 25 | 750 | 500 | 300 | * | * | 5–7 | 2 | 250 | * | 45 | 250 | * | 200 | 50 | 10 | 100 |
NOM-127-SSA1-1994 | 6.5–8.5 | * | * | 750 | 1000 | * | * | * | * | * | 250 | 0.5 | 10 | 400 | * | 200 | * | * | * |
sampling 1 | |||||||||||||||||||
S1 | 6.56 | 46.60 | 23.34 | 227.00 | 115.00 | 60.00 | 0.00 | 6.55 | 7.24 | 7.90 | 34.35 | 0.70 | 0.00 | 4.20 | 286.84 | 19.82 | 7.90 | 2.44 | 5.36 |
S2 | 6.44 | 47.40 | 23.11 | 231.00 | 120.00 | 80.00 | 0.00 | 7.29 | 7.28 | 7.30 | 22.23 | 0.90 | 0.00 | 5.40 | 334.68 | 16.56 | 10.43 | 3.13 | 5.08 |
S3 | 6.54 | 47.20 | 23.16 | 227.00 | 112.00 | 50.00 | 0.00 | 11.56 | 7.14 | 8.40 | 14.14 | 0.80 | 0.00 | 4.80 | 239.04 | 16.18 | 6.98 | 1.97 | 4.47 |
S4 | 6.43 | 43.79 | 24.15 | 379.00 | 188.00 | 64.00 | 0.00 | 3.66 | 7.48 | 0.65 | 16.35 | 0.00 | 0.00 | 23.98 | 403.86 | 36.89 | 12.14 | 6.78 | 14.36 |
S5 | 7.78 | 50.1 | 21.14 | 330.00 | 349.00 | 169.00 | 44.86 | 76.40 | 7.54 | 3.2 | 30.43 | 0.00 | 0.535 | 23.86 | 427.67 | 41.40 | 8.83 | 12.03 | 15.77 |
sampling 2 | |||||||||||||||||||
S1 | 9.16 | 47.60 | 21.27 | 223.00 | 112.00 | 160.00 | 0.00 | 7.33 | 7.11 | 6.80 | 38.39 | 0.50 | 0.00 | 3.00 | 240.19 | 22.42 | 10.93 | 3.54 | 6.37 |
S2 | 9.21 | 48.20 | 21.08 | 223.00 | 111.00 | 150.00 | 0.00 | 8.68 | 7.25 | 7.30 | 38.39 | 0.80 | 0.00 | 4.80 | 277.67 | 17.42 | 10.27 | 3.10 | 5.24 |
S3 | 9.22 | 47.90 | 21.10 | 224.00 | 111.0 | 130.00 | 0.00 | 10.35 | 7.37 | 7.70 | 38.39 | 1.00 | 0.00 | 6.00 | 194.76 | 13.76 | 9.68 | 2.75 | 4.40 |
S4 | 9.15 | 48.70 | 21.12 | 379.00 | 176.00 | 160.00 | 0.00 | 121.7 | 6.25 | 0.53 | 24.30 | 0.10 | 0.00 | 21.52 | 549.59 | 33.20 | 15.17 | 7.25 | 16.09 |
S5 | 7.91 | 50.00 | 21.30 | 325.00 | 323.00 | 301.00 | 76.80 | 320.73 | 7.57 | 3.07 | 42.62 | 0.20 | 0.552 | 24.32 | 364.52 | 37.23 | 12.65 | 13.26 | 16.77 |
sampling 3 | |||||||||||||||||||
S1 | 8.25 | 46.90 | 22.16 | 236.00 | 116.00 | 50.00 | 0.00 | 156.13 | 6.04 | 8.30 | 18.19 | 0.90 | 0.00 | 5.40 | 246.68 | 15.12 | 7.51 | 2.09 | 4.34 |
S2 | 8.21 | 48.00 | 22.16 | 229.00 | 113.00 | 130.00 | 0.00 | 136.81 | 6.48 | 8.70 | 30.31 | 0.90 | 0.00 | 5.40 | 258.82 | 15.53 | 6.16 | 1.66 | 4.21 |
S3 | 8.21 | 46.10 | 23.29 | 229.00 | 113.00 | 100.00 | 0.00 | 138.00 | 6.56 | 9.00 | 22.23 | 0.70 | 0.00 | 4.20 | 235.29 | 18.56 | 4.63 | 1.29 | 4.60 |
S4 | 8.67 | 64.80 | 21.12 | 379.00 | 182.00 | 98.00 | 4.14 | 21.27 | 10.17 | 0.70 | 13.89 | 0.20 | 0.00 | 26.38 | 246.11 | 33.93 | 8.86 | 4.74 | 12.28 |
S5 | 7.76 | 50.3 | 21.44 | 293.00 | 341.00 | 225.00 | 11.00 | 17.54 | 7.54 | 3.32 | 21.54 | 0.25 | 0.548 | 29.62 | 450.75 | 37.42 | 7.69 | 8.67 | 13.78 |
sampling 4 | |||||||||||||||||||
S1 | 8.96 | 25.92 | 23.10 | 230.00 | 110.00 | 30.00 | 20.30 | 48.74 | 6.24 | 8.50 | 30.31 | 3.17 | 0.60 | 19.02 | 54.77 | 23.11 | 5.37 | 1.73 | 5.65 |
S2 | 8.95 | 48.20 | 22.80 | 222.00 | 113.00 | 40.00 | 14.20 | 49.90 | 6.23 | 8.80 | 18.19 | 0.60 | 0.10 | 3.60 | 98.78 | 19.31 | 5.13 | 1.49 | 4.83 |
S3 | 8.90 | 49.00 | 22.90 | 221.00 | 112.00 | 90.00 | 7.30 | 50.73 | 6.20 | 8.80 | 6.06 | 0.70 | 0.00 | 4.20 | 112.10 | 16.88 | 5.58 | 1.53 | 4.40 |
S4 | 8.19 | 18.35 | 23.43 | 379.00 | 182.00 | 46.00 | 12.54 | 55.11 | 6.06 | 0.73 | 8.18 | 0.20 | 0.10 | 22.88 | 195.16 | 36.89 | 8.25 | 4.76 | 14.28 |
S5 | 7.72 | 49.13 | 21.34 | 426.00 | 346.00 | 114.00 | 26.36 | 65.61 | 6.02 | 3.54 | 18.43 | 0.25 | 0.548 | 26.15 | 236.13 | 41.91 | 9.67 | 9.84 | 16.48 |
sampling 5 | |||||||||||||||||||
S1 | 7.78 | 50.1 | 21.14 | 330.00 | 113.00 | 190.00 | 3.40 | 29.16 | 7.24 | 7.10 | 47.28 | 0.20 | 0.10 | 1.20 | 250.0 | 28.06 | 8.91 | 3.12 | 7.21 |
S2 | 7.91 | 50.00 | 21.30 | 325.00 | 115.00 | 220.00 | 0.70 | 26.19 | 7.33 | 7.00 | 51.32 | 0.50 | 0.00 | 3.00 | 296.0 | 23.82 | 10.03 | 3.31 | 6.51 |
S3 | 7.76 | 50.3 | 21.44 | 293.00 | 115.00 | 200.00 | 3.50 | 27.78 | 7.35 | 9.9 | 53.75 | 0.30 | 0.40 | 1.80 | 297.0 | 27.32 | 0.11 | 0.18 | 5.69 |
S4 | 7.72 | 48.41 | 22.92 | 379.00 | 289.00 | 221.00 | 4.83 | 54.64 | 6.99 | 0.71 | 32.28 | 0.00 | 0.10 | 9.95 | 337.86 | 42.43 | 11.53 | 7.86 | 12.32 |
S5 | 7.70 | 48.61 | 23.52 | 772.00 | 382.00 | 446.00 | 5.13 | 64.04 | 7.09 | 3.84 | 53.86 | 0.00 | 0.542 | 21.56 | 414.38 | 48.09 | 9.96 | 12.67 | 13.93 |
max | 9.22 | 64.8 | 24.15 | 772.00 | 382.00 | 446.00 | 76.8 | 320.73 | 10.17 | 9.90 | 53.86 | 3.17 | 0.6 | 29.62 | 549.59 | 48.09 | 15.17 | 13.26 | 16.77 |
min | 6.43 | 18.35 | 21.08 | 221.00 | 110.00 | 30.00 | 0.00 | 3.66 | 6.02 | 0.53 | 6.06 | 0.00 | 0.00 | 1.20 | 54.77 | 13.76 | 0.11 | 0.18 | 4.21 |
aver | 8.04 | 46.86 | 22.19 | 308.44 | 178.36 | 140.96 | 9.40 | 60.64 | 7.03 | 5.67 | 29.02 | 0.55 | 0.17 | 12.29 | 281.95 | 27.33 | 8.57 | 4.85 | 8.98 |
SD | 0.88 | 8.35 | 1.02 | 118.27 | 96.14 | 95.13 | 17.60 | 70.46 | 0.85 | 3.24 | 13.91 | 0.64 | 0.24 | 10.08 | 113.29 | 10.61 | 3.09 | 3.86 | 4.85 |
DQO | DBO | pH | T | OD | PO43− | Alk | SDT | Cl− | ORP | NO3− | Na+ | Mg2+ | K+ | Ca2+ | SO42− | EC | Hrd | NH4+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DQO | 1 | ||||||||||||||||||
DBO | 0.745 ** | 1 | |||||||||||||||||
pH | 0.378 | 0.325 | 1 | ||||||||||||||||
T | −0.198 | −0.294 | −0.493 | 1 | |||||||||||||||
OD | −0.283 | 0.155 | 0.067 | −0.332 | 1 | ||||||||||||||
PO43− | −0.044 | −0.256 | −0.111 | 0.465 | −0.419 | 1 | |||||||||||||
Alk | 0.151 | 0.206 | −0.007 | 0.051 | −0.143 | −0.679 ** | 1 | ||||||||||||
SDT | 0.329 | 0.632 * | 0.202 | −0.095 | 0.233 | −0.692 ** | 0.585 * | 1 | |||||||||||
Cl− | 0.250 | 0.404 | 0.516 * | −0.272 | −0.149 | .319 | −0.155 | −0.091 | 1 | ||||||||||
ORP | −0.140 | 0.113 | 0.312 | 0.038 | 0.703 ** | −0.399 | 0.135 | 0.503 | −0.254 | 1 | |||||||||
NO3− | −0.119 | −0.320 | −0.078 | 0.349 | −0.312 | 0.940 ** | −0.671 ** | −0.739 ** | 0.280 | −0.325 | 1 | ||||||||
Na+ | 0.161 | 0.417 | 0.104 | −0.304 | 0.345 | −0.929 ** | 0.661 ** | 0.867 ** | −0.254 | 0.423 | −0.971 ** | 1 | |||||||
Mg2+ | 0.091 | 0.299 | 0.201 | −0.601 * | 0.039 | −0.683 ** | 0.630 * | 0.346 | 0.194 | −0.134 | −0.589 * | 0.541 * | 1 | ||||||
K+ | 0.446 | 0.768 ** | 0.271 | −0.340 | 0.204 | −0.753 ** | 0.666 ** | 0.909 ** | 0.106 | 0.294 | −0.778 ** | 0.854 ** | 0.637 * | 1 | |||||
Ca2+ | 0.296 | 0.522 * | 0.208 | −0.370 | 0.320 | −0.929 ** | 0.770 ** | 0.813 ** | −0.144 | 0.390 | −0.925 ** | 0.935 ** | 0.661 ** | 0.905 ** | 1 | ||||
SO42− | 0.187 | 0.437 | 0.195 | −0.226 | 0.491 | −0.823 ** | 0.668 ** | 0.761 ** | −0.242 | 0.630 * | −0.776 ** | 0.813 ** | 0.407 | 0.774 ** | 0.905 ** | 1 | |||
EC | 0.370 | 0.685 ** | 0.252 | −0.067 | 0.275 | −0.650 ** | 0.604* | 0.971 ** | −0.036 | 0.558* | −0.694 ** | 0.814 ** | 0.312 | 0.909 ** | 0.825 ** | 0.839 ** | 1 | ||
Hrd | 0.477 | 0.707 ** | 0.612 * | −0.305 | 0.043 | −0.422 | 0.391 | 0.778 ** | 0.429 | 0.286 | −0.481 | 0.593 * | 0.421 | 0.797 ** | 0.590 * | 0.435 | 0.747 ** | 1 | |
NH4 | 0.453 | 0.775 ** | 0.306 | 0.091 | 0.130 | −0.310 | 0.416 | 0.862 ** | 0.208 | 0.461 | −0.394 | 0.546 * | 0.127 | 0.791 ** | 0.572 * | 0.610 * | 0.918 ** | 0.776 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávalos-Peña, I.; Fuentes-Rivas, R.M.; Fonseca-Montes de Oca, R.M.G.; Ramos-Leal, J.A.; Morán-Ramírez, J.; Martínez Alva, G. Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley. Int. J. Environ. Res. Public Health 2021, 18, 11195. https://doi.org/10.3390/ijerph182111195
Dávalos-Peña I, Fuentes-Rivas RM, Fonseca-Montes de Oca RMG, Ramos-Leal JA, Morán-Ramírez J, Martínez Alva G. Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley. International Journal of Environmental Research and Public Health. 2021; 18(21):11195. https://doi.org/10.3390/ijerph182111195
Chicago/Turabian StyleDávalos-Peña, Ingrid, Rosa María Fuentes-Rivas, Reyna María Guadalupe Fonseca-Montes de Oca, José Alfredo Ramos-Leal, Janete Morán-Ramírez, and Germán Martínez Alva. 2021. "Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley" International Journal of Environmental Research and Public Health 18, no. 21: 11195. https://doi.org/10.3390/ijerph182111195
APA StyleDávalos-Peña, I., Fuentes-Rivas, R. M., Fonseca-Montes de Oca, R. M. G., Ramos-Leal, J. A., Morán-Ramírez, J., & Martínez Alva, G. (2021). Assessment of Physicochemical Groundwater Quality and Hydrogeochemical Processes in an Area near a Municipal Landfill Site: A Case Study of the Toluca Valley. International Journal of Environmental Research and Public Health, 18(21), 11195. https://doi.org/10.3390/ijerph182111195