The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Drug Administration; HHS. Food labeling; nutrition labeling of standard menu items in restaurants and similar retail food establishments. Final rule. Fed. Regist. 2014, 79, 71155. [Google Scholar]
- Burton, S.; Creyer, E.H.; Kees, J.; Huggins, K. Attacking the obesity epidemic: The potential health benefits of providing nutrition information in restaurants. Am. J. Public Health 2006, 96, 1669–1675. [Google Scholar] [CrossRef]
- Balfour, D.; Moody, R.; Wise, A.; Brown, K. Food choice in response to computer-generated nutrition information provided about meal selections in workplace restaurants. J. Hum. Nutr. Diet. 1996, 9, 231–237. [Google Scholar]
- Abbar, S.; Mejova, Y.; Weber, I. You tweet what you eat: Studying food consumption through twitter. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, New York, NY, USA, 18–23 April 2015. [Google Scholar]
- Zappavigna, M. Coffeetweets: Bonding around the bean on Twitter. In The Language of Social Media; Springer: Berlin/Heidelberg, Germany, 2014; pp. 139–160. [Google Scholar]
- Widener, M.J.; Li, W. Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Appl. Geogr. 2014, 54, 189–197. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Huang, J.; Zhang, Z.-K.; Zhang, Q.-M.; Zhou, T.; Ahn, Y.-Y. Geography and similarity of regional cuisines in China. PloS ONE 2013, 8, e79161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharana, A.; Cai, K.; Hellerstein, J.; Hswen, Y.; Munsell, M.; Staneva, V.; Verma, M.; Vint, C.; Wijaya, D.; Nsoesie, E.O. Detecting reports of unsafe foods in consumer product reviews. JAMIA Open 2019, 2, 330–338. [Google Scholar] [PubMed]
- Yang, S.; Kou, S.C.; Lu, F.; Brownstein, J.S.; Brooke, N.; Santillana, M. Advances in using Internet searches to track dengue. PLoS Comput. Biol. 2017, 13, e1005607. [Google Scholar] [CrossRef]
- Sewalk, K.C.; Tuli, G.; Hswen, Y.; Brownstein, J.S.; Hawkins, J.B. Using Twitter to Examine Web-Based Patient Experience Sentiments in the United States: Longitudinal Study. J. Med. Internet Res. 2018, 20, e10043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Sun, X.; Dutta, A.; Zupancich, M. Twitter in Circulating Transportation Information: A Case Study on Two Cities. In Proceedings of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Burton, S.H.; Tanner, K.W.; Giraud-Carrier, C.G.; West, J.H.; Barnes, M.D. Right time, right place” health communication on Twitter: Value and accuracy of location information. J. Med. Internet Res. 2012, 14, e156. [Google Scholar] [PubMed]
- Block, J.P. The calorie-labeling Saga-Federal Preemption and delayed implementation of public health law. N. Engl. J. Med. 2018, 379, 103–105. [Google Scholar] [CrossRef]
- Petimar, J.; Zhang, F.; Cleveland, L.P.; Simon, D.; Gortmaker, S.L.; Polacsek, M.; Bleich, S.N.; Rimm, E.B.; Roberto, C.A.; Block, J.P. Estimating the effect of calorie menu labeling on calories purchased in a large restaurant franchise in the southern United States: Quasi-experimental study. BMJ 2019, 367, l5837. [Google Scholar] [CrossRef] [Green Version]
- FDA. Food Labeling & Nutrition. Food and Drug Administration Web Site. 2020. Available online: https://www.fda.gov/food/food-labeling-nutrition/menu-labeling-requirements (accessed on 8 May 2020).
- Kim, A.E.; Hansen, H.M.; Murphy, J.; Richards, A.K.; Duke, J.; Allen, J.A. Methodological considerations in analyzing Twitter data. J. Natl. Cancer Inst. Monogr. 2013, 2013, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.-K.; Seok, J.H.; Oh, J.S.; Lee, H.W.; Kim, K.H. Use of hangeul twitter to track and predict human influenza infection. PLoS ONE 2013, 8, e69305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A.K.; Soumerai, S.B.; Zhang, F.; Ross-Degnan, D. Segmented regression analysis of interrupted time series studies in medication use research. J. Clin. Pharm. Ther. 2002, 27, 299–309. [Google Scholar] [CrossRef]
- Penfold, R.B.; Zhang, F. Use of interrupted time series analysis in evaluating health care quality improvements. Acad. Pediatr. 2013, 13, S38–S44. [Google Scholar] [CrossRef] [PubMed]
- Findling, M.T.; Werth, P.M.; Musicus, A.A.; Bragg, M.A.; Graham, D.J.; Elbel, B.; Roberto, C.A. Comparing five front-of-pack nutrition labels’ influence on consumers’ perceptions and purchase intentions. Prev. Med. 2018, 106, 114–121. [Google Scholar] [CrossRef]
- Franckle, R.L.; Block, J.P.; Roberto, C.A. Calorie underestimation when buying high-calorie beverages in fast-food contexts. Am. J. Public Health 2016, 106, 1254–1255. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.N.; Economos, C.D.; Spiker, M.L.; Vercammen, K.A.; VanEpps, E.M.; Block, J.P.; Elbel, B.; Story, M.; Roberto, C.A. A systematic review of calorie labeling and modified calorie labeling interventions: Impact on consumer and restaurant behavior. Obesity 2017, 25, 2018–2044. [Google Scholar] [CrossRef]
- Elbel, B.; Kersh, R.; Brescoll, V.L.; Dixon, L.B. Calorie Labeling And Food Choices: A First Look at the Effects on Low-Income People in New York City: Calorie information on menus appears to increase awareness of calorie content, but not necessarily the number of calories people purchase. Health Aff. 2009, 28 (Suppl. 1), w1110–w1121. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A. McDonald’s Pulls Back on Promotions and Earnings Fall Short, Shares Down 4%. CNBC. RESTAURANTS Web Site . Available online: https://www.cnbc.com/2019/10/22/mcdonalds-mcd-earnings-q3-2019.html (accessed on 8 May 2020).
- Profitworks. McDonald’s Has The Largest Market Share in the Fast Food Industry (10% Global Share and 43% of the U.S Fast Serve Market). Profitworks, Statistics on McDonald’s Leadership Web Site. Available online: https://profitworks.ca/small-business-sales-and-marketing-resources/blog/marketing-strategy/541-how-mcdonalds-became-the-leader-fast-food-industry-marketing-strategy.html (accessed on 8 May 2020).
- Farley, T.A.; Caffarelli, A.; Bassett, M.T.; Silver, L.; Frieden, T.R. New York City’s Fight Over Calorie Labeling: A two-year struggle ultimately proves that innovation in food regulation is entirely possible at the local level. Health Aff. 2009, 28 (Suppl. 1), w1098–w1109. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, L.P.; Simon, D.; Block, J.P. Compliance in 2017 with Federal Calorie Labeling in 90 chain restaurants and 10 retail food outlets prior to required implementation. Am. J. Public Health 2018, 108, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Machín, L.; Aschemann-Witzel, J.; Curutchet, M.R.; Giménez, A.; Ares, G. Does front-of-pack nutrition information improve consumer ability to make healthful choices? Performance of warnings and the traffic light system in a simulated shopping experiment. Appetite 2018, 121, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kanter, R.; Reyes, M.; Swinburn, B.; Vandevijvere, S.; Corvalán, C. The food supply prior to the implementation of the Chilean Law of Food Labeling and Advertising. Nutrients 2019, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrúa, A.; Curutchet, M.R.; Rey, N.; Barreto, P.; Golovchenko, N.; Sellanes, A.; Velazco, G.; Winokur, M.; Giménez, A.; Ares, G. Impact of front-of-pack nutrition information and label design on children’s choice of two snack foods: Comparison of warnings and the traffic-light system. Appetite 2017, 116, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.; Garmendia, M.L.; Olivares, S.; Aqueveque, C.; Zacarías, I.; Corvalán, C. Development of the Chilean front-of-package food warning label. BMC Public Health 2019, 19, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taillie, L.S.; Reyes, M.; Colchero, M.A.; Popkin, B.; Corvalán, C. An evaluation of Chile’s Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study. PLoS Med. 2020, 17, e1003015. [Google Scholar] [CrossRef] [PubMed]
- Leetaru, K. Visualizing Seven Years of Twitter’s Evolution: 2012–2018. Available online: https://www.forbes.com/sites/kalevleetaru/2019/03/04/visualizing-seven-years-of-twitters-evolution-2012-2018/#36b028d87ccf (accessed on 14 September 2020).
- Hutchinson, A. Twitter Shares the Most Tweeted Topics and Celebrities of 2018. Available online: https://www.socialmediatoday.com/news/twitter-shares-the-most-tweeted-topics-and-celebrities-of-2018/543679 (accessed on 14 September 2020).
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sang, E.T.K.; Bos, J. Predicting the 2011 dutch senate election results with twitter. In Proceedings of the Workshop on Semantic Analysis in Social Media, Avignon, France, 23 April 2012. [Google Scholar]
- Hswen, Y.; Hawkins, J.B.; Sewalk, K.; Tuli, G.; Williams, D.R.; Viswanath, K.; Subramanian, S.V.; Brownstein, J.S. Racial and Ethnic Disparities in Patient Experiences in the United States: 4-Year Content Analysis of Twitter. J. Med. Internet Res. 2020, 22, e17048. [Google Scholar] [CrossRef]
2018 | Calorie(s) Tweets | Total Daily Tweets | Ratio of Daily Calorie(s) Tweets to Total Tweets |
---|---|---|---|
Mean | 87 | 3,494,074 | 2.4 × 10−5 |
STD | 29 | 917,092 | 6.0 × 10−6 |
Min | 1 | 110 | 7.0 × 10−6 |
25% Quantile | 73 | 3,502,201 | 2.1 × 10−5 |
50% Quantile | 85 | 3,585,176 | 2.4 × 10−5 |
75% Quantile | 97 | 3,638,652 | 2.7 × 10−5 |
Max | 252 | 7,172,789 | 7.1 × 10−5 |
2016 | Calorie(s) Tweets | Total Daily Tweets | Ratio of Daily Calorie(s) Tweets to Total Tweets |
Mean | 104 | 2,519,899 | 4.1 × 10−5 |
STD | 52 | 1,208,704 | 9.0 × 10−6 |
Min | 2 | 47,064 | 2.2 × 10−5 |
25% Quantile | 61 | 1,565,400 | 3.7 × 10−5 |
50% Quantile | 102 | 2,442,214 | 4.0 × 10−5 |
75% Quantile | 149 | 3,790,938 | 4.4 × 10−5 |
Max | 219 | 4,119,771 | 1.3 × 10−5 |
2018 | 2016 | |
---|---|---|
Mean | 85.52 | 79.35 |
STD | 13.22 | 12.98 |
Min | 54 | 49 |
25% Quantile | 76 | 69.25 |
50% Quantile | 92 | 85.5 |
75% Quantile | 95 | 88.25 |
Max | 100 | 100 |
Coefficient | Standard Error | T-Statistic | p-Value | |
---|---|---|---|---|
2018 | ||||
Baseline level β0 | 7.95 × 10−4 | 2.20 × 10−4 | 3.611 | <0.001 |
Baseline trend β1 | −4.37 × 10−8 | 1.25 × 10−8 | −3.493 | <0.001 |
Level change post-implementation β2 | 2.01 × 10−6 | 1.13 × 10−6 | 1.772 | 0.077 |
Trend change post- implementation β3 | 3.19 × 10−8 | 1.34 × 10−8 | 2.373 | 0.018 |
2016 | ||||
Baseline level β0 | −1.09 × 10−5 | 3.15 × 10−4 | −0.034 | 0.973 |
Baseline trend β1 | 3.15 × 10−9 | 1.87 × 10−8 | 0.169 | 0.866 |
Level change post-implementation β2 | −3.05 × 10−6 | 1.71 × 10−6 | −1.786 | 0.075 |
Trend change post-implementation β3 | 7.48 × 10−9 | 2.01 × 10−8 | 0.372 | 0.710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hswen, Y.; Moran, A.J.; Prasad, S.; Li, A.; Simon, D.; Cleveland, L.; Hawkins, J.B.; Brownstein, J.S.; Block, J. The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis. Int. J. Environ. Res. Public Health 2021, 18, 10794. https://doi.org/10.3390/ijerph182010794
Hswen Y, Moran AJ, Prasad S, Li A, Simon D, Cleveland L, Hawkins JB, Brownstein JS, Block J. The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis. International Journal of Environmental Research and Public Health. 2021; 18(20):10794. https://doi.org/10.3390/ijerph182010794
Chicago/Turabian StyleHswen, Yulin, Alyssa J. Moran, Siona Prasad, Anna Li, Denise Simon, Lauren Cleveland, Jared B. Hawkins, John S. Brownstein, and Jason Block. 2021. "The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis" International Journal of Environmental Research and Public Health 18, no. 20: 10794. https://doi.org/10.3390/ijerph182010794
APA StyleHswen, Y., Moran, A. J., Prasad, S., Li, A., Simon, D., Cleveland, L., Hawkins, J. B., Brownstein, J. S., & Block, J. (2021). The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis. International Journal of Environmental Research and Public Health, 18(20), 10794. https://doi.org/10.3390/ijerph182010794