Soft Tissue Mobilization and Stretching for Shoulder in CrossFitters: A Randomized Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Approvals
2.2. Study Population
2.3. Randomisation
2.4. Outcome Evaluation
2.5. Intervention
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Durkalec-Michalski, K.; Nowaczyk, P.; Siedzik, K. Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. J. Int. Soc. Sports Nutr. 2019, 16, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimek, C.; Ashbeck, C.; Brook, A.J.; Durall, C. Are Injuries More Common with Crossfit Training than other Forms of Exercise? J. Sport Rehabil. 2018, 27, 295–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, P.O.; Souza, M.B.; Sampaio, T.V.; Almeida, G.P.; Oliveira, R.R. Epidemiology and associated factors for CrossFit-related musculoskeletal injuries: A cross-sectional study. J. Sports Med. Phys. Fitness 2020, 60, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological Predictors of Competition Performance in CrossFit Athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef]
- Andersen, E.; Lockie, R.; Dawes, J.J. Relationship of Absolute and Relative Lower-Body Strength to Predictors of Athletic Performance in Collegiate Women Soccer Players. Sports 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Hak, P.; Hodzovic, E.; Hickey, B. The nature and prevalence of injury during CrossFit training. J. Strength Cond. Res. 2013. [Google Scholar] [CrossRef]
- Cools, A.M.; Johansson, F.R.; Borms, D.; Maenhout, A. Prevention of shoulder injuries in overhead athletes: A science-based approach. Braz. J. Phys. Ther. 2015, 19, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Cheatham, S.W.; Lee, M.; Cain, M.; Baker, R. The efficacy of instrument assisted soft tissue mobilization: A systematic review. J. Can. Chiropr. Assoc. 2016, 60, 200–211. [Google Scholar]
- Coviello, J.P.; Kakar, R.S.; Reynolds, T.J. Short-term effects of instrument-assisted soft tissue mobilization on pain free range of motion in a weightlifter with subacromial pain syndrome. Int. J. Sports Phys. Ther. 2017, 12, 144–154. [Google Scholar]
- Baker, R.T.; Hansberger, B.L.; Warren, L.; Nasypany, A. A novel approach for the reversal of chronic apparent hamstring tightness: A case report. Int. J. Sports Phys. Ther. 2015, 10, 723–733. [Google Scholar]
- Markovic, G. Acute effects of instrument assisted soft tissue mobilization vs. foam rolling on knee and hip range of motion in soccer players. J. Bodyw. Mov. Ther. 2015, 19, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.B.; Shanley, E.; Hawkins, R.; Beattie, P.F.; Fritz, S.; Kwartowitz, D.; Thigpen, C.A. Mechanisms of Shoulder Range of Motion Deficits in Asymptomatic Baseball Players. Am. J. Sports Med. 2015, 43, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sung, D.J.; Lee, J. Therapeutic effectiveness of instrument-assisted soft tissue mobilization for soft tissue injury: Mechanisms and practical application. J. Exerc. Rehabil. 2017, 13, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Lee, J.J.; Kim, D.H.; Hyun You, S.J. Inhibitory effects of instrument-assisted neuromobilization on hyperactive gastrocnemius in a hemiparetic stroke patient. Bio. Med. Mater. Eng. 2014, 24, 2389–2394. [Google Scholar] [CrossRef] [Green Version]
- Seffrin, C.B.; Cattano, N.M.; Reed, M.A.; Gardiner-Shires, A.M. Instrument-Assisted Soft Tissue Mobilization: A Systematic Review and Effect-Size Analysis. J. Athl. Train. 2019, 54, 808–821. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Hasegawa, S.; Nakamura, M.; Ishishita, S.; Yanase, K.; Fujita, K.; Umehara, J.; Ji, X.; Ibuki, S.; Ichihashi, N. Effects of two stretching methods on shoulder range of motion and muscle stiffness in baseball players with posterior shoulder tightness: A randomized controlled trial. J. Shoulder Elbow Surg. 2016, 25, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Mine, K.; Nakayama, T.; Milanese, S.; Grimmer, K. Effectiveness of Stretching on Posterior Shoulder Tightness and Glenohumeral Internal-Rotation Deficit: A Systematic Review of Randomized Controlled Trials. J. Sport Rehabil. 2017, 26, 294–305. [Google Scholar] [CrossRef]
- Umehara, J.; Hasegawa, S.; Nakamura, M.; Nishishita, S.; Umegaki, H.; Tanaka, H.; Fujita, K.; Kusano, K.; Ichihashi, N. Effect of scapular stabilization during cross-body stretch on the hardness of infraspinatus, teres minor, and deltoid muscles: An ultrasonic shear wave elastography study. Musculoskelet. Sci. Pract. 2017, 27, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Umehara, J.; Ikezoe, T.; Nishishita, S.; Nakamura, M.; Umegaki, H.; Kobayashi, T.; Fujita, K.; Ichihashi, N. Effect of hip and knee position on tensor fasciae latae elongation during stretching: An ultrasonic shear wave elastography study. Clin. Biomech. 2015, 30, 1056–1059. [Google Scholar] [CrossRef] [Green Version]
- Laudner, K.; Compton, B.D.; McLoda, T.A.; Walters, C.M. Acute effects of instrument assisted soft tissue mobilization for improving posterior shoulder range of motion in collegiate baseball players. Int. J. Sports Phys. Ther. 2014, 9, 1–7. [Google Scholar]
- Park, K.N.; Kwon, O.Y.; Weon, J.H.; Choung, S.S.; Kim, S.H. Comparison of the effects of local cryotherapy and passive cross-body stretch on extensibility in subjects with posterior shoulder tightness. J. Sports Sci. Med. 2014, 13, 84–90. [Google Scholar] [PubMed]
- Moore, S.D.; Laudner, K.G.; McLoda, T.A.; Shaffer, M.A. The immediate effects of muscle energy technique on posterior shoulder tightness: A randomized controlled trial. J. Orthop. Sports Phys. Ther. 2011, 41, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Pallant, J. SPSS Survival Manual, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef]
- McMurray, J.; Landis, S.; Lininger, K.; Baker, R.T.; Nasypany, A.; Seegmiller, J. A comparison and review of indirect myofascial release therapy, instrument assisted soft tissue mobilization, and active release techniques to inform clinical decision making. Int. J. Athl. Ther. Train. 2015, 20, 29–34. [Google Scholar] [CrossRef]
- McClure, P.; Balaicuis, J.; Heiland, D.; Broersma, M.E.; Thorndike, C.K.; Wood, A. A randomized controlled comparison of stretching procedures for posterior shoulder tightness. J. Orthop. Sports Phys. Ther. 2007, 37, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Manske, R.C.; Meschke, M.; Porter, A.; Smith, B.; Reiman, M. A randomized controlled single-blinded comparison of stretching versus stretching and joint mobilization for posterior shoulder tightness measured by internal rotation motion loss. Sports Health 2010, 2, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, L.B.; Thigpen, C.A.; Hawkins, R.J.; Beattie, P.F.; Shanley, E. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits. Sports Health 2017, 9, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, B.; Devereux, G.; Beato, M. Injury risk and injury incidence rates in CrossFit. J. Sports Med. Phys. Fitness 2020, 60, 1005–1013. [Google Scholar] [CrossRef]
Psychometric Variables | All Sample | Experimental Group | Control Group | Sig. | |||
---|---|---|---|---|---|---|---|
Age (years) | 30.81 (5.35) | 31.45 (6.02) | 30.10 (4.72) | 0.16 a | |||
Height (cm) | 178.33 (7.93) | 178.27 (9.07) | 175.36 (7.68) | 0.14 a | |||
Weight (kg) | 82.69 (10.82) | 81.82 (12.18) | 70.93 (11.81) | 0.48 a | |||
Body mass index (kg/m2) | 25.98 (3.04) | 25.60 (2.29) | 22.92 (2.44) | 0.06 a | |||
Clinical variables | |||||||
Time practicing CrossFit (months) * | 29.38 (20.69) | 41 (19.32) | 16.6 (13.81) | 0.02 a | |||
Training per week (days) * | 4.1 (1.22) | 4.73 (0.90) | 3.40 (1.17) | 0.03 a | |||
Time per training (minutes) * | 82.14 (28.31) | 91.36 (28.81) | 72 (25.29) | 0.00 a | |||
Sociodemographic variables | n | % | n | % | n | % | |
Gender (Male/Female) | 19/2 | 90.5/9.5 | 10/1 | 90.9/9.1 | 9/1 | 90/10 | 0.78 b |
Participation in competition (Yes/No) * | 6/15 | 28.6/71.4 | 4/7 | 36.4/63.6 | 2/8 | 20/80 | 0.04 b |
Variables | Experimental Group | Control Group | ||||
---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | |
Right internal rotation | 36.4 (18.0) | 51.1 (11.8) | 48.5 (12.0) | 38.65 (15.8) | 44.00 (16.4) | 55.90 (10.8) |
Perception of right internal rotation | 3.00 (2.0) | 2.00 (1.0) | 2.00 (1.0) | 1.00 (1.5) | 2.00 (2.2) | 3.00 (2.7) |
Right horizontal adduction | 12.2 (12.0) | 19.2 (4.0) | 19.1 (5.0) | 12.9 (10.2) | 16.85 (7.1) | 16.80 (17.1) |
Perception of right horizontal adduction | 3.00 (2.0) | 2.00 (2.0) | 2.00 (1.0) | 2.00 (3.0) | 2.00 (0.25) | 3.00 (1.0) |
Left internal rotation | 38.5 (13.1) | 43.9 (15.8) | 54.8 (5.5) | 44.15 (23.4) | 50.45 (10.1) | 58.35 (12.0) |
Perception of left internal rotation | 3.00 (4.0) | 2.00 (3.0) | 2.00 (4.0) | 2.00 (2.25) | 3.00 (1.5) | 2.50 (2.2) |
Left horizontal adduction | 15.7 (6.9) | 20.30 (4.8) | 21.5 (9.3) | 11.90 (5.9) | 16.05 (9.1) | 22.45 (13.4) |
Perception of left horizontal adduction | 4.00 (1.0) | 2.00 (2.0) | 2.00 (2.0) | 2.50 (3.0) | 2.50 (3.0) | 2.50 (3.0) |
Variables | Experimental Group | Control Group | ||
---|---|---|---|---|
T0–T1 | T0–T2 | T0–T1 | T0–T2 | |
Right internal rotation | −13.87 (1.07) * | −16.58 (1.28) * | −3.88 (0.33) | −14.90 (1.29) * |
Perception of right internal rotation | 1.27 (−0.81) ** | 1.00 (−0.64) * | −0.90 (0.83) | −1.80 (1.67) * |
Right horizontal adduction | −6.79 (1.21) ** | −6.93 (1.23) ** | −3.16 (0.46) * | −6.13 (0.89) * |
Perception of right horizontal adduction | 2.00 (−0.86) ** | 1.45 (−0.62) ** | 0.10 (−0.06) | −0.20 (0.12) |
Left internal rotation | −12.05 (1.47) ** | −18.25 (−6.56) ** | −8.77 (0.54) * | −13.48 (0.83) * |
Perception of left internal rotation | 1.36 (−0.58) ** | 1.36 (−0.58) ** | −0.800 (0.38) | −0.900 (0.42) |
Left horizontal adduction | −4.40 (1.20) ** | −6.03 (1.64) ** | −4.01 (0.65) | −9.27 (1.51) * |
Perception of left horizontal adduction | 1.63 (−0.80) ** | 1.54 (−0.75) ** | 0.10 (−0.04) | −0.30 (0.14) |
Variables | Intra-Group Effect | Inter-Group Effect | ||||
---|---|---|---|---|---|---|
F | Sig. | η2p | F | Sig. | η2p | |
Right internal rotation a | 0.53 | 0.59 | 0.02 | 0.87 | 0.36 | 0.04 |
Perception of right internal rotation a | 8.38 | 0.00 * | 0.30 | 0.08 | 0.77 | 0.01 |
Right horizontal adduction a | 2.02 | 0.15 | 0.09 | 0.20 | 0.65 | 0.01 |
Perception of right horizontal adduction a | 8.49 | 0.01 * | 0.30 | 0.13 | 0.71 | 0.01 |
Left internal rotation a | 1.46 | 0.24 | 0.07 | 0.68 | 0.41 | 0.03 |
Perception of left internal rotation a | 3.70 | 0.04 * | 0.16 | 0.02 | 0.86 | 0.01 |
Left horizontal adduction a | 1.56 | 0.22 | 0.07 | 0.01 | 0.89 | 0.00 |
Perception of left horizontal adduction | 4.98 | 0.01 * | 0.20 | 1.11 | 0.30 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusdado-García, M.; Cuesta-Barriuso, R. Soft Tissue Mobilization and Stretching for Shoulder in CrossFitters: A Randomized Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 575. https://doi.org/10.3390/ijerph18020575
Jusdado-García M, Cuesta-Barriuso R. Soft Tissue Mobilization and Stretching for Shoulder in CrossFitters: A Randomized Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(2):575. https://doi.org/10.3390/ijerph18020575
Chicago/Turabian StyleJusdado-García, Marcos, and Rubén Cuesta-Barriuso. 2021. "Soft Tissue Mobilization and Stretching for Shoulder in CrossFitters: A Randomized Pilot Study" International Journal of Environmental Research and Public Health 18, no. 2: 575. https://doi.org/10.3390/ijerph18020575
APA StyleJusdado-García, M., & Cuesta-Barriuso, R. (2021). Soft Tissue Mobilization and Stretching for Shoulder in CrossFitters: A Randomized Pilot Study. International Journal of Environmental Research and Public Health, 18(2), 575. https://doi.org/10.3390/ijerph18020575