Changes in Psychoacoustic Recognition and Brain Activity by Types of Fire Alarm
Abstract
:1. Introduction
1.1. Background of Fire Alarms
1.2. Fire Alarms and Psychoacoustic Recognition
1.3. Fire Alarms and Human Brain Activity
2. Materials and Methods
2.1. Participants
2.2. Development of Six Types of Fire Alarm Stimuli
2.3. Development of the Subjective Questionnaire
2.4. EEG Data Acquisition
2.5. Experimental Procedures
2.6. Data Analysis and Statistical Analysis
3. Results
3.1. Development of Questionnaire for Psychoacoustic Recognition
3.1.1. Reliability of the Questionnaire Items
3.1.2. Principal Component Analysis of the Questionnaire
3.2. Evaluation of Psychoacoustic Recognition
3.3. Brain Activity by EEG Measurement
3.3.1. EEG Data: Theta (4–8 Hz)
3.3.2. EEG Data: Alpha (8–13 Hz)
3.3.3. EEG Data: Beta (12–30 Hz); SMR (12–16 Hz), Mid-Beta (16–21 Hz) and High Beta (21–30 Hz)
3.3.4. EEG Data: Gamma (30–50 Hz)
4. Discussion
4.1. Psychoacoustic Recognition
4.1.1. Arousal
4.1.2. Urgency
4.1.3. Immersion
4.2. EEG Data
4.2.1. Theta effect
4.2.2. Alpha Effect
4.2.3. Beta Effect
4.2.4. Gamma Effect
4.3. Limitations of the Present Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component | No. | Question | Factor | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Factor 1. Urgency | |||||
U | 8 | I felt threatened while listening to the sound | 0.861 | ||
U | 6 | I felt a dangerous situation listening to the sound | 0.812 | ||
U | 5 | I felt urgent while listening to the sound | 0.809 | ||
U | 7 | I felt I should have evacuated while listening to the sound | 0.795 | ||
A | 2 | I felt nervous while listening to the sound | 0.735 | ||
Factor 2. Immersion | |||||
I | 11 | It was easy to concentrate while listening to the sound | 0.871 | ||
I | 10 | I completely concentrated while listening to the sound | 0.814 | ||
I | 12 | I was easy to immerse while listening to the sound | 0.730 | ||
I | 9 | I was completely immersed while listening to the sound | 0.690 | ||
Factor 3. Arousal | |||||
A | 4 | I felt stress listening to the sound | 0.801 | ||
A | 1 | I felt bored and tired while listening to the sound | −0.646 | ||
A | 3 | I felt anxious while listening to the sound | 0.614 |
References
- Patterson, R.D. Guidelines for Auditory Warning Systems on Civil Aircraft; Civil Aviation Authority: London, UK, 1982. [Google Scholar]
- Simpson, C.A.; Marchionda-Frost, K. Synthesized Speech rate and pitch effects on intelligibility of warning messages for pilots. Hum. Factors 1984, 26, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, A.; Drake, C.; Rivenez, M.; Pellieux, L.; Chastres, V. Perception of Urgency and Alarm Design. In Proceedings of the International Conference on Auditory Display, Kyoto, Japan, 2–5 July 2002. [Google Scholar]
- Hellier, E.; Edworthy, J. On using psychophysical techniques to achieve urgency mapping in auditory warnings. Appl. Ergon. 1999, 30, 167–171. [Google Scholar] [CrossRef]
- Mande, I. A standard fire alarm signal temporal or ‘slow whoop’. Fire J. 1975, 69, 25–28. [Google Scholar]
- International Standards Organization. ISO 8201: Acoustics—Audible Emergency Evacuation Signal; ISO: Geneva, Switzerland, 1987. [Google Scholar]
- NFPA 72. National Fire Alarm Code; National Fire Protection Association: Quincy, MA, USA, 2002. [Google Scholar]
- The National Building Code of Canada. Institute for Research in Construction (IRC), a Part of the National Research Council of Canada; The National Building Code of Canada: Ottawa, BC, Canada, 1995. [Google Scholar]
- Proulx, G.; Laroche, C. Recollection, identification and perceived urgency of the temporal-three evacuation signal. J. Fire Prot. Eng. 2003, 13, 67–82. [Google Scholar] [CrossRef]
- Bruck, D.; Thomas, I. Towards a better smoke alarm signal—An evidence based approach. Fire Saf. Sci. 2008, 9, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Lee, A. The Audibility of Smoke Alarms in Residential Homes; Consumer Product Safety Commission: Bethesda, MD, USA, 2005. [Google Scholar]
- Gosswiller, E. The Slow Whoop—An Alternative Standard Fire Alarm Signal. Fire J. 1975, 69, 21–23. [Google Scholar]
- Humphreys, W.Y. The alarming problem. Fire J. 1973, 67, 15–17. [Google Scholar]
- Lee, A.; Midgett, J.; White, S. A Review of the Sound Effectiveness of Residential Smoke Alarms; Consumer Product Safety Commission: Bethesda, MD, USA, 2004. [Google Scholar]
- Bruck, D.; Ball, M.; Thomas, I.; Rouillard, V. How does the pitch and pattern of a signal affect auditory arousal thresholds? J. Sleep Res. 2009, 18, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Kahn, M.J. Human awakening and subsequent identification of fire-related cues. Fire Technol. 1984, 20, 20–26. [Google Scholar] [CrossRef]
- Tong, D.; Canter, D. Informative warnings: In situ evaluations of fire alarms. Fire Saf. J. 1985, 9, 267–279. [Google Scholar] [CrossRef]
- Lee, M.J. An improved design for audibility of fire alarm sound in residential buildings. Ph.D. Thesis, University of Seoul, Seoul, Korea, April 2002. Unpublished. [Google Scholar]
- Wogalter, M.S. Purposes and scope of warings. In Handbook of Warnings; Wogalter, M.S., Ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 2006. [Google Scholar]
- Reeves, B.; Nass, C.I. The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Lang, P.J. The emotion probe: Studies of motivation and attention. Am. Psychol. 1995, 50, 372. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, T.; Koh, J. Ergonomic Design of Voice Warning Sounds Used in Utility Helicopter. J. IKEEE 2013, 17, 189–201. [Google Scholar] [CrossRef]
- Ha, W.H.; Park, S.H.; Kim, H.T. Effects of Auditory Warning Types on Response Time and Accuracy in Ship Bridges. J. Ergon. Soc. Korea 2010, 29, 673–680. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Marketing in hypermedia computer-mediated environments: Conceptual foundations. J. Mark. 1996, 60, 50–68. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Sunny, S.J.; Cheng, C.-Y.; Liu, E.Z.F. Exploring online game players’ flow experiences and positive affect. TOJET Turk. Online J. Educ. Technol. 2011, 10, 106–114. [Google Scholar]
- Beck, A.T.; Emery, G.; Greenberg, R.L. Anxiety Disorders Andphoblas: A Cognitive Perspective; Greenburg: New York, NY, USA, 1985. [Google Scholar]
- Dalgleish, T. The emotional brain. Nat. Rev. Neurosci. 2004, 5, 583–589. [Google Scholar] [CrossRef]
- Davidson, R.J.; Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 1999, 3, 11–21. [Google Scholar] [CrossRef]
- Phan, K.L.; Wager, T.; Taylor, S.F.; Liberzon, I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 2002, 16, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Niedermeyer, E. The normal EEG of the waking adult. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Oxford University Press: Oxford, UK, 2005; Volume 167, pp. 155–164. [Google Scholar]
- Schacter, D.L. EEG theta waves and psychological phenomena: A review and analysis. Biol. Psychol. 1977, 5, 47–82. [Google Scholar] [CrossRef]
- Inanaga, K. Frontal midline theta rhythm and mental activity. Psychiatry Clin. Neurosci. 1998, 52, 555–566. [Google Scholar] [CrossRef]
- Jensen, O.; Tesche, C.D. Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 2002, 15, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Schack, B.; Sauseng, P. The functional significance of theta and upper alpha oscillations. Exp. Psychol. 2005, 52, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Mathias, C.J.; Josephs, O.; O’Doherty, J.P.; Zanini, S.; Dewar, B.; Cipolotti, L.; Shallice, T.; Dolan, R.J. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain 2003, 126, 2139–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aftanas, L.I.; Golocheikine, S.A. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Suetsugi, M.; Mizuki, Y.; Ushijima, I.; Kobayashi, T.; Tsuchiya, K.; Aoki, T.; Watanabe, Y. Appearance of frontal midline theta activity in patients with generalized anxiety disorder. Neuropsychobiology 2000, 41, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Berger, H. Über das elektrenkephalogramm des menschen. Eur. Arch. Psychiatry Clin. Neurosci. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Eun, H.J. Basics of Electroencephalography for Neuropsychiatrist. J. Korean Neuropsychiatr. Assoc. 2019, 58, 76–104. [Google Scholar] [CrossRef] [Green Version]
- Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 1999, 22, 337–345. [Google Scholar] [CrossRef]
- Hari, R.; Salmelin, R. Human cortical oscillations: A neuromagnetic view through the skull. Trends Neurosci. 1997, 20, 44–49. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Koshkarov, V.I.; Pokrovskaja, V.L.; Lotova, N.V.; Mordvintsev, Y.N. Pre- and post-stimulus processes in affective task and event-related desynchronization (ERD): Do they discriminate anxiety coping styles? Int. J. Psychophysiol. 1996, 24, 197–212. [Google Scholar] [CrossRef]
- Schmidt, L.A.; Trainor, L.J. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn. Emot. 2001, 15, 487–500. [Google Scholar] [CrossRef]
- Noh, G.Y.; Park, D.J.; Jang, H. An experimental study of user experience for 3D video game: Presence, arousal, recognition memory, and brain activity pattern. PLoS ONE 2015, 10, e0123251. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- International Standards Organisation. ISO 7029: Acoustics—Statistical Distribution of Hearing Thresholds Related to Age and Gender; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Krosnick, J.A.; Fabrigar, L.R. Designing rating scales for effective measurement in surveys. In Survey Measurement and Process Quality; John Wiley & Sons: Hoboken, NJ, USA, 1997; pp. 141–164. [Google Scholar]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar] [PubMed]
- Gonzalez, C.; Lewis, B.A.; Roberts, D.M.; Pratt, S.M.; Baldwin, C.L. Perceived Urgency and Annoyance of Auditory Alerts in a Driving Context. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Boston, MA, USA, 22–26 October 2012; Volume 36, pp. 1684–1687. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring emotion: Behavior, feeling, and physiology. In Cognitive Neuroscience of Emotion; Lane, R.D., Nadel, L., Eds.; Oxford University Press: Oxford, UK, 2000; pp. 242–276. [Google Scholar]
- Nishifuji, S.; Sato, M.; Maino, D.; Tanaka, S. Effect of acoustic stimuli and mental task on alpha, beta and gamma rhythms in brain wave. In Proceedings of the SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 1548–1554. [Google Scholar]
- Crone, N.E.; Miglioretti, D.L.; Gordon, B.; Sieracki, J.M.; Wilson, M.T.; Uematsu, S.; Lesser, R.P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 1998, 121, 2271–2299. [Google Scholar] [CrossRef] [PubMed]
- Nishifuji, S.; Miyahara, I. Destabilization of alpha wave during and after listening to unpleasant and pleasant acoustic stimuli. In Proceedings of the 2008 SICE Annual Conference, Chofu, Japan, 20–22 August 2008; pp. 2732–2737. [Google Scholar]
Age (Year) | Hearing Thresholds in Frequency (Hz) | MCL | UCL | |||||||
---|---|---|---|---|---|---|---|---|---|---|
250 | 500 | 1000 | 2000 | 4000 | 8000 | PTA | ||||
YG | 25.1 (1.58) | 3.80 (5.05) | 4.00 (5.95) | 2.80 (4.35) | 4.40 (4.40) | 5.60 (4.40) | 5.40 (4.54) | 4.20 (4.86) | 58.39 (3.86) | 96.60 (5.28) |
OG | 74.48 (3.70) | 20.20 (7.43) | 20.80 (9.32) | 23.40 (8.63) | 28.00 (11.09) | 38.60 (17.05) | 51.80 (12.41) | 27.70 (13.64) | 67.58 (4.97) | 105.32 (4.46) |
Stimulus | Fundamental Frequency | Time Interval |
---|---|---|
Bell | Main frequency: 3533, 5149, 5752 Hz | Steady |
Slow whoop | 500 Hz base frequency and gradually rises approximately one octave | 3.5 s ON/500 msec OFF |
T-3 520 Hz | 512 Hz with the odd harmonics (3rd, 5th, 7th, etc.) | 500 msec ON/500 msec OFF |
T-3 3100 Hz | 3100 Hz with the odd harmonics (3rd, 5th, 7th, etc.) | 500 msec ON/500 msec OFF |
Simulated T-3 520 Hz | T-3 520 Hz with deteriorated high-frequency | 500 msec ON/500 msec OFF |
Simulated T-3 3100 Hz | T-3 3100 Hz with deteriorated high-frequency | 500 msec ON/500 msec OFF |
Independent Variable | Variable | Type III Sum of Squares | df | Mean Square | F | Partial ŋ2 |
---|---|---|---|---|---|---|
Arousal | Signal | 517.940 | 5 | 103.588 | 6.845 *** | 0.110 |
Age | 0.960 | 1 | 0.960 | 0.063 | 0.000 | |
Gender | 25.667 | 1 | 25.667 | 1.696 | 0.006 | |
Signal × Age | 74.864 | 5 | 14.973 | 0.989 | 0.018 | |
Signal × Gender | 57.647 | 5 | 11.529 | 0.762 | 0.014 | |
Age × Gender | 8.427 | 1 | 8.427 | 0.557 | 0.002 | |
Signal × Age × Gender | 58.197 | 5 | 11.639 | 0.769 | 0.014 | |
Error | 4177.103 | 276 | 15.134 | |||
Total | 0.000 | 300 |
Independent Variable | Variable | Type III Sum of Squares | df | Mean Square | F | Partial ŋ2 |
---|---|---|---|---|---|---|
Urgency | Signal | 1315.687 | 5 | 263.137 | 10.119 *** | 0.155 |
Age | 958.043 | 1 | 958.043 | 36.843 *** | 0.118 | |
Gender | 26.995 | 1 | 26.995 | 1.038 | 0.004 | |
Signal × Age | 213.084 | 5 | 42.617 | 1.639 | 0.029 | |
Signal × Gender | 59.767 | 5 | 11.953 | 0.460 | 0.008 | |
Age × Gender | 62.043 | 1 | 62.043 | 2.386 | 0.009 | |
Signal × Age × Gender | 199.404 | 5 | 39.881 | 1.534 | 0.027 | |
Error | 7176.910 | 276 | 26.003 | |||
Total | 103,730.000 | 300 |
Independent Variable | Variable | Type III Sum of Squares | df | Mean Square | F | Partial ŋ2 |
---|---|---|---|---|---|---|
Immersion | Signal | 191.550 | 5 | 38.310 | 2.867 * | 0.049 |
Age | 2438.144 | 1 | 2438.144 | 182.481 *** | 0.398 | |
Gender | 7.847 | 1 | 7.847 | 0.587 | 0.002 | |
Signal × Age | 196.966 | 5 | 39.393 | 2.948 * | 0.051 | |
Signal × Gender | 26.270 | 5 | 5.254 | 0.393 | 0.007 | |
Age × Gender | 8.917 | 1 | 8.917 | 0.667 | 0.002 | |
Signal × Age × Gender | 72.592 | 5 | 14.518 | 1.087 | 0.019 | |
Error | 3687.654 | 276 | 13.361 | |||
Total | 0.000 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, S.; Han, W.; Jang, H.-J.; Noh, G.-Y. Changes in Psychoacoustic Recognition and Brain Activity by Types of Fire Alarm. Int. J. Environ. Res. Public Health 2021, 18, 541. https://doi.org/10.3390/ijerph18020541
You S, Han W, Jang H-J, Noh G-Y. Changes in Psychoacoustic Recognition and Brain Activity by Types of Fire Alarm. International Journal of Environmental Research and Public Health. 2021; 18(2):541. https://doi.org/10.3390/ijerph18020541
Chicago/Turabian StyleYou, Sunghwa, Woojae Han, Han-Jin Jang, and Ghee-Young Noh. 2021. "Changes in Psychoacoustic Recognition and Brain Activity by Types of Fire Alarm" International Journal of Environmental Research and Public Health 18, no. 2: 541. https://doi.org/10.3390/ijerph18020541
APA StyleYou, S., Han, W., Jang, H.-J., & Noh, G.-Y. (2021). Changes in Psychoacoustic Recognition and Brain Activity by Types of Fire Alarm. International Journal of Environmental Research and Public Health, 18(2), 541. https://doi.org/10.3390/ijerph18020541