Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Literature Search
2.3. Procedures
2.4. Statistical Analyses
2.5. Analysis of Moderator Variables
3. Results
3.1. Study Selection
3.2. Methodological Quality
3.3. Study Characteristics
3.4. Main Effect
3.4.1. Vertical Jump Performance
3.4.2. Linear Sprint Time
3.4.3. COD Time
3.5. Effect of Moderator Variables
3.6. Strength Training
3.7. Plyometric Training
4. Discussion
4.1. Vertical Jump Performance
4.2. Liner Sprint Time
4.3. COD Time
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fédération Internationale de Footbal Association. Women’s Football across the National Associations. 2017. Available online: https://www.uefa.com/MultimediaFiles/Download/OfficialDocument/uefaorg/Women%27sfootball/02/43/13/56/2431356_DOWNLOAD.pdf (accessed on 1 May 2020).
- Covic, N.; Jeleskovic, E.; Alic, H.; Rado, I.; Kafedzic, E.; Sporis, G.; McMaster, D.T.; Milanovic, Z. Reliability, Validity and Usefulness of 30-15 Intermittent Fitness Test in Female Soccer Players. Front. Physiol. 2016, 7, 510. [Google Scholar] [CrossRef] [Green Version]
- Munro, A.G.; Herrington, L.C. Between-session reliability of four hop tests and the agility t-test. J. Strength Cond. Res. 2011, 25, 1470–1477. [Google Scholar] [CrossRef]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Pardos-Mainer, E.; Casajus, J.; Gonzalo-Skok, O. Effects of Combined Strength and Power Training on Physical Performance and Interlimb Asymmetries in Adolescent. Int. J. Sports Physiol. Perform. 2020, 20, 1–9. [Google Scholar]
- Pardos-Mainer, E.; Casajus, J.A.; Gonzalo-Skok, O. Adolescent female soccer players’ soccer-specific warm-up effects on performance and inter-limb asymmetries. Biol. Sport 2019, 36, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Shalfawi, S.A.; Haugen, T.; Jakobsen, T.A.; Enoksen, E.; Tonnessen, E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J. Strength Cond. Res. 2013, 27, 2966–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Plyometric training in young male soccer players: Potential e_ect of jump height. Pediatric. Exerc. Sci. 2019, 31, 306–313. [Google Scholar] [CrossRef]
- Chu, D.A. Jumping into Plyometrics; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Keeley, D.W.; Plummer, H.A.; Oliver, G.D. Predicting asymmetrical lower extremity strength deficits in college-aged men and women using common horizontal and vertical power field tests: A possible screening mechanism. J. Strength Cond. Res. 2011, 25, 1632–1637. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.; Clark, C.C.T.; Ramirez-Campillo, R.; Davies, M.J.; Drury, B. A Meta-Analysis of Plyometric Training in Female Youth: Its Efficacy and Shortcomings in the Literature. J. Strength Cond. Res. 2019, 33, 1996–2008. [Google Scholar] [CrossRef]
- Sánchez, M.; Sanchez-Sanchez, J.; Nakamura, F.Y.; Clemente, F.M.; Romero-Moraleda, B.; Ramirez-Campillo, R. Effects of Plyometric Jump Training in Female Soccer Player’s Physical Fitness: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8911. [Google Scholar] [CrossRef] [PubMed]
- Knuttgen, H.G.; Komi, P.V. Considerations for exercise. In Strength Power Sport; Komi, P.V., Ed.; Blackwell Science Ltd.: Oxford, UK, 2003. [Google Scholar]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; National Strength and Conditioning Association: Champaing, IL, USA, 2000. [Google Scholar]
- Harries, S.K.; Lubans, D.R.; Callister, R. Resistance training to improve power and sports performance in adolescent athletes: A systematic review and meta-analysis. J. Sci. Med. Sport 2012, 15, 532–540. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, L.; Kilty, J. Relationship of the stretch-shortening cycle to sprint performance in trained female athletes. J. Strength Cond. Res. 2001, 15, 326–331. [Google Scholar] [PubMed]
- Lesinski, M.; Prieske, O.; Chaabene, H.; Granacher, U. Seasonal effects of strength endurance vs. power training in young female soccer athletes. J. Strength Cond. Res 2020. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: New York, NY, USA, 2019. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Bruce-Low, S.; Smith, D. Explosive exercise in sport training: A critical review. J. Exerc. Physiol. 2007, 10, 21–33. [Google Scholar]
- Chu, D.; Myer, G. Plyometrics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Moran, J.; Ramirez-Campillo, R.; Granacher, U. Effects of Jumping Exercise on Muscular Power in Older Adults: A Meta-Analysis. Sports Med. 2018, 48, 2843–2857. [Google Scholar] [CrossRef]
- Turner, H.; Bernard, R. Calculating and synthesizing effect sizes. Contemp. Issues Commun. Sci. Disord. 2006, 33, 42–55. [Google Scholar] [CrossRef]
- The Nordic Cochrane Centre. Review Manager; Cochrane Collaboration: London, UK, 2014; pp. 1–43. [Google Scholar]
- Hedges, L.; Olkin, I. Methods for Meta-Analysis; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Analysing Data and Undertaking Meta-Analyses. In Cochrane Handbook for Systematic Reviews for Interventions; Cochrane Book Series; John Wiley & Sons: New York, NY, USA, 2008; pp. 481–529. [Google Scholar]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 2013, 8, e69930. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Deeks, J.J.; Altman, D.G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Book Series; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, F. Statistical and measurement pitfalls in the use of meta-regression in meta-analysis. Career Dev. Int. 2017, 22, 469–476. [Google Scholar] [CrossRef]
- Pescatello, L.S.; MacDonald, H.V.; Lamberti, L.; Johnson, B.T. Exercise for Hypertension: A Prescription Update Integrating Existing Recommendations with Emerging Research. Curr. Hypertens Rep. 2015, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; Garcia-Hermoso, A.; Manuel Clemente, F. Effects of plyometric jump training in female soccer player’s vertical jump height: A systematic review with meta-analysis. J. Sports Sci. 2020. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Vergara-Pedreros, M.; Henriquez-Olguin, C.; Martinez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De La Fuente, C.I.; Caniuqueo, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J. Sports Sci. 2016, 34, 687–693. [Google Scholar] [CrossRef]
- Rosas, F.; Ramirez-Campillo, R.; Martinez, C.; Caniuqueo, A.; Canas-Jamet, R.; McCrudden, E.; Meylan, C.; Moran, J.; Nakamura, F.Y.; Pereira, L.A.; et al. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players. J. Hum. Kinet. 2017, 58, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.; Heitmann, K.A.; Sagelv, E.H.; Johansen, D.; Pettersen, S.A. Improved maximal strength is not associated with improvements in sprint time or jump height in high-level female football players: A clusterrendomized controlled trial. BMC Sports Sci. Med. Rehabil. 2019, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Lindblom, H.; Walden, M.; Hagglund, M. No effect on performance tests from a neuromuscular warm-up programme in youth female football: A randomised controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 2116–2123. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Gonzalez-Jurado, J.A.; Martinez, C.; Nakamura, F.Y.; Penailillo, L.; Meylan, C.M.; Caniuqueo, A.; Canas-Jamet, R.; Moran, J.; Alonso-Martinez, A.M.; et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J. Sci. Med. Sport 2016, 19, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Garcia-Pinillos, F.; Garcia-Ramos, A.; Yanci, J.; Gentil, P.; Chaabene, H.; Granacher, U. Effects of Different Plyometric Training Frequencies on Components of Physical Fitness in Amateur Female Soccer Players. Front. Physiol. 2018, 9, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbar, N.; Ates, S.; Agopyan, A. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. J. Strength Cond. Res. 2014, 28, 2888–2894. [Google Scholar] [CrossRef] [PubMed]
- Sedano Campo, S.; Vaeyens, R.; Philippaerts, R.M.; Redondo, J.C.; de Benito, A.M.; Cuadrado, G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 2009, 23, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Rubley, M.D.; Haase, A.C.; Holcomb, W.R.; Girouard, T.J.; Tandy, R.D. The effect of plyometric training on power and kicking distance in female adolescent soccer players. J. Strength Cond. Res. 2011, 25, 129–134. [Google Scholar] [CrossRef]
- Siegler, J.; Gaskill, S.; Ruby, B. Changes evaluated in soccer-specific power endurance either with or without a 10-week, in-season, intermittent, high-intensity training protocol. J. Strength Cond. Res. 2003, 17, 379–387. [Google Scholar]
- Saez-Saez de Villarreal, E.; Requena, B.; Newton, R.U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 2010, 13, 513–522. [Google Scholar] [CrossRef]
- Spineti, J.; Figueiredo, T.; Willardson, J.; Bastos de Oliveira, V.; Assis, M.; Fernandes de Oliveira, L.; Miranda, H.; Machado de Ribeiro Reis, V.M.; Simao, R. Comparison between traditional strength training and complex contrast training on soccer players. J. Sports Med. Phys. Fit. 2019, 59, 42–49. [Google Scholar] [CrossRef]
- Anderst, W.; Eksten, F.; Koceja, D. Effects of plyometric and explosive resistance training on lower body power. Med. Sci. Sports Exerc. 1994, 26, S31. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch Shortening Cycle; Strength and Power in Sport: Oxford, UK, 2003. [Google Scholar]
- Morin, J.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Saez-Saez de Villarreal, E.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sports Med. 1992, 13, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Mero, A. Force-time characteristics and running velocity of male sprinters during the acceleration phase of sprinting. Res. Q. Exerc. Sport 1988, 59, 94–98. [Google Scholar] [CrossRef]
- Rimmer, E.; Sleivert, G. Effects of a plyometrics intervention program on sprint performance. J. Strength Cond. Res. 2000, 14, 295–301. [Google Scholar]
- Asadi, A. Effects of in-season short term plyometric training on jumping and agility performance of basketball players. Sport Sci. Health 2013, 9, 133–137. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.G.; Herniman, J.J.; Ricard, M.D.; Cheatham, C.C.; Michael, T.J. The effects of a 6-week plyometric training program on agility. J. Sports Sci. Med. 2006, 5, 459–465. [Google Scholar]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical Determinants of Faster Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Noyes, F.R.; Barber-Westin, S.D.; Tutalo Smith, S.T.; Campbell, T. A training program to improve neuromuscular and performance indices in female high school soccer players. J. Strength Cond. Res. 2013, 27, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Greska, E.K.; Cortes, N.; Van Lunen, B.L.; Onate, J.A. A feedback inclusive neuromuscular training program alters frontal plane kinematics. J. Strength Cond. Res. 2012, 26, 1609–1619. [Google Scholar] [CrossRef] [Green Version]
- Grieco, C.R.; Cortes, N.; Greska, E.K.; Lucci, S.; Onate, J.A. Effects of a combined resistance-plyometric training program on muscular strength, running economy, and Vo2peak in division I female soccer players. J. Strength Cond. Res. 2012, 26, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.; Laas, M. Strength training and metabolic conditioning for female youth and adolescent soccer players. Strength Cond. J. 2016, 38, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.D.; Atkinson, G. Changes in Sprint-Related Outcomes During a Period of Systematic Training in a Girls’ Soccer Academy. J. Strength Cond. Res. 2019, 33, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Studies | N°1 | N°2 | N°3 | N°4 | N°5 | N°6 | N°7 | N°8 | N°9 | N°10 | N°11 | Total 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lindblom et al., 2012 [39] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 7 |
Ozbar et al., 2014 [42] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5 |
Pardos-Mainer et al., 2019 [5] | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 7 |
Pardos-Mainer et al., 2020 [6] | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 7 |
Pedersen et al., 2019 [38] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 8 |
Ramirez-Campillo 2016 b [41] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 |
Ramirez-Campillo 2016 a [36] | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 9 |
Ramirez-Campillo 2018 (1 session/wk.) [40] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 7 |
Ramirez-Campillo 2018 (2 session/wk.) [40] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 7 |
Rosas et al., 2018 [37] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 9 |
Rubley et al., 2011 [44] | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |
Sedano del Campo et al., 2009 [43] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5 |
Siegler et al., 2003 [45] | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |
Study | Study Group | N | Age (Years) | BM (kg) | Height (cm) | SST | Wks | F | T | D | Exercise Type | Test | Response |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lindblom et al. | ST (FIFA 11+) | 23 | 14.2 ± 0.7 | 53.9 ± 8.6 | 165 ± 6.5 | Yes | 11 | 2 | 22 | 15 | One-legged knee squat, pelvic lift, two-legged knee squat, the bench, the lunge and jump/landing | CMJ 20-m linear sprint Illinois agility test | =CMJ =20-m linear sprint =Illinois agility test |
Control | 18 | 14.2 ± 1.1 | 51.6 ± 7.4 | 164.2 ± 6.1 | |||||||||
Pardos-Mainer et al. | ST (FIFA 11+) | 19 | 12.5 ± 0.4 | 51.2 ± 7.7 | 153.7 ± 6.9 | Yes | 10 | 2 | 20 | 20 | Running, lower extremities’ strength, balance, plyometric, agility and COD exercises | CMJ V-cut test | ↑ CMJ ↓ V-cut test |
Control | 17 | 13.1 ± 0.3 | 55.9 ± 8.2 | 160.8 ± 4.9 | |||||||||
Pardos-Mainer et al. | ST (CSPT) | 19 | 16.2 ± 0.9 | 55.9 ± 5.5 | 159.8 ± 5.4 | Yes | 8 | 2 | 16 | 35 | The diver, one-legged pelvic tilt, single leg box step-up, forward lunge, backward lunge, one-legged hip thrust, eccentric box drops, Russian belt posterior chain, Russian belt anterior chain, plank, lateral plank and lumbar bridge | CMJ 20-m linear sprint V-cut test | ↑ CMJ ↑ 20-m linear sprint ↑ V-cut test |
Control | 18 | 15.6 ± 0.9 | 54.1 ± 8.8 | 159.7 ± 4.9 | |||||||||
Pedersen et al. | ST | 18 | 18 ± 3 | 62 ± 6 | 167 ± 6 | Yes | 5 | 2 | 10 | NR | 90°squat with load and Nordic hamstring exercises | CMJ 15-m linear sprint | =CMJ =15-m linear sprint |
Control | 15 | 19 ± 2 | 63 ± 10 | 168 ± 5 |
Study | Study Group | N | Age (years) | BM (kg) | Height (cm) | SPT | Wks | F | T | D | Exercise Type | Test | Response |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ozbar et al. | PT | 9 | 18.3 ± 2.6 | 58.8 ±7.8 | 163.1 ± 5.3 | Yes | 1 | 8 | 8 | 30–40 | Variety of plyometric exercises designed for the lower extremity (i.e., bilateral and unilateral DJs, CMJs and SLJ) | CMJ 20-m linear sprint | ↑ CMJ ↑ 20-m linear sprint |
Control | 9 | 18 ± 2 | 54.4 ± 6.1 | 159.4 ± 5.1 | |||||||||
Ramirez-Campillo 2016 a | PT | 10 | 22.9 ± 2.1 | 56.8 ± 5.4 | 164 ± 9 | No | 2 | 6 | 12 | NR | CMJ | ↑ CMJ | |
Control | 10 | 22.5 ± 2.1 | 60.1 ± 7.5 | 161± 6 | |||||||||
Ramirez-Campillo 2016 b | PT | 19 | 22.4 ±2.4 | 60.7 ± 9.3 | 161 ± 5 | No | 2 | 6 | 12 | 40 | CMJ 30-m linear sprint COD speed test | ↑ CMJ ↑ 30-m linear sprint ↑ COD speed test | |
Control | 19 | 20.5 ± 2.5 | 60.2 ± 9.3 | 159 ± 6 | |||||||||
Ramirez-Campillo 2018 (1 session/wk.) | PT | 8 | 22.8 ± 4.3 | 54.9 ± 3.7 | 158 ± 3 | No | 1 | 8 | 8 | 6–20 | CMJ 15-m linear sprint COD speed test | ↑ CMJ ↑ 15-m linear sprint ↑ COD speed test | |
Control | 7 | 20.1 ± 1.8 | 55.3 ± 3.3 | 160.1 ± 5 | |||||||||
Ramirez-Campillo 2018 (2 session/wk.) | PT | 8 | 21.4 ± 2.5 | 59.6 ± 8.5 | 157.6 ± 4.8 | No | 2 | 8 | 16 | 6–20 | CMJ 15-m linear sprint COD speed test | ↑ CMJ ↑ 15-m linear sprint ↑ COD speed test | |
Control | 7 | 20.1 ± 1.8 | 55.3 ± 3.3 | 160.1 ± 5 | |||||||||
Rosas et al. | PT | 8 | 22.8 ± 2.1 | 61.1 ± 8.3 | 164 ± 8 | No | 2 | 6 | 12 | NR | CMJ | ↑ CMJ | |
Control | 9 | 24 ± 2.7 | 58.5 ± 7.2 | 132 ± 4 | |||||||||
Rubley et al. | PT | 10 | 13.4 ± 0.5 | 50.8 ± 5.1 | 162.5 ± 5.6 | No | 1 | 12 | 12 | NR | CMJA | ↑ CMJA | |
Control | 6 | NR | NR | NR | |||||||||
Sedano- Campo et al. | PT | 10 | 22.8 ± 2.1 | 58.5 ± 9.3 | 163 ± 7 | Yes | 3 | 12 | 36 | 46–60 | CMJ | ↑ CMJ | |
Control | 10 | 23 ± 3.2 | 56.9 ± 7.4 | 161.5 ± 5.4 | |||||||||
Siegler et al. | PT | 17 | 16.5 ± 0.91 | 61.4 ± 9.43 | 167.4 ± 4.6 | No | 2 (1–3) | 10 | 20 | 10–15 | CMJA 20-m linear sprint | ↑ CMJA ↑ 20-m linear sprint | |
Control | 17 | 16.2 ± 1.4 | 58 ± 7.23 | 166.7 ± 4.7 |
Variable | Subgroup | Effect Size with 95% Confidence Interval | Effect Descriptor | Groups | n | Within-Group I2 (%) | Within-Group p a | Between-Group I2 (%) | Between-Group p 1 b |
---|---|---|---|---|---|---|---|---|---|
CMJ | <8 weeks | −0.02 (−0.66; 0.61) | Trivial | 1 | 61 | NE | 0.94 | 0.0 | 0.39 |
≥8 weeks | 0.33 (−0.16; 0.81) | Small | 3 | 19 | 44.0 | 0.18 | |||
<2 sessions/week | NE | ||||||||
≥2 sessions/week | 0.24 (−0.14; 0.62) | Small | 4 | 80 | 31.0 | 0.22 | |||
≤16 sessions | 0.28 (−0.32; 0.88) | Small | 2 | 38 | 43.0 | 0.36 | 0.0 | 0.88 | |
>16 sessions | 0.21 (−0.48; 0.90) | Small | 2 | 42 | 61.0 | 0.55 | |||
<30 min/session | 0.21 (−0.48; 0.90) | Small | 2 | 42 | 61.0 | 0.55 | 44.0 | 0.18 | |
≥30 min/session | 0.59 (−0.06; 1.24) | Small | 1 | 19 | NE | 0.08 | |||
Sprint test | <8 weeks | −0.18 (−0.81; 0.46) | Trivial | 1 | 19 | NE | 0.59 | 0.0 | 0.43 |
≥8 weeks | −0.59 (−1.70; 0.51) | Small | 2 | 42 | 83.0 | 0.29 | |||
<2 sessions/week | NE | ||||||||
≥2 sessions/week | −0.45 (−1.12; 0.22) | Small | 3 | 61 | 70.0 | 0.19 | |||
≤16 sessions | −0.67 (−1.64; 0.31) | Moderate | 2 | 38 | 0.77 | 0.18 | 12.5 | 0.28 | |
>16 sessions | −0.05 (−0.62; 0.53) | Trivial | 1 | 23 | NE | 0.87 | |||
<30 min/session | −0.05 (−0.62; 0.53) | Trivial | 1 | 23 | NE | 0.87 | 83.3 | 0.01 | |
≥30 min/session | −1.17 (−1.87; −0.48) | Large | 1 | 19 | NE | <0.001 | |||
COD tests | <8 weeks | NE | |||||||
≥8 weeks | −0.03 (−0.34; 0.29) | Trivial | 7 | 137 | 42.0 | 0.86 | |||
<2 sessions/week | NE | ||||||||
≥2 sessions/week | −0.03 (−0.34; 0.29) | Trivial | 7 | 137 | 42.0 | 0.86 | |||
≤16 sessions | −0.40 (−0.78; −0.03) | Small | 3 | 57 | 0.0 | 0.03 | 85.1 | 0.01 | |
>16 sessions | 0.24 (−0.07; 0.55) | Trivial | 4 | 80 | 0.0 | 0.13 | |||
<30 min/session | 0.24 (−0.07; 0.55) | Trivial | 4 | 80 | 0.0 | 0.13 | 85.1 | 0.01 | |
≥30 min/session | 0.40 (−0.18; −0.03) | Small | 3 | 57 | 0.0 | 0.03 |
Subgroup | Effect Size with 95% Confidence Interval | Effect Descriptor | Groups | n | Within-Group I2 (%) | Within-Group p a | Between-Group I2 (%) | Between-Group p b | |
---|---|---|---|---|---|---|---|---|---|
CMJ | <8 weeks | 0.41 (−0.06; 0.87) | Small | 3 | 37 | 0.0 | 0.08 | 52.2 | 0.15 |
≥8 weeks | 0.96 (0.37; 1.56) | Moderate | 6 | 62 | 57.0 | 0.002 | |||
<2 sessions/week | 1.00 (0.19; 1.80) | Moderate | 3 | 27 | 46.0 | 0.01 | 0.0 | 0.42 | |
≥2 sessions/week | 0.62 (0.15; 1.08) | Moderate | 6 | 72 | 43.0 | 0.009 | |||
≤16 sessions | 0.61 (0.27; 0.95) | Moderate | 7 | 72 | 1.0 | 0.0004 | 0.0 | 0.52 | |
>16 sessions | 1.22 (−0.60; 3.04) | Large | 2 | 27 | 86.0 | 0.19 | |||
<30 min/session | 0.41 (−0.07; 0.90) | Small | 3 | 33 | 0.0 | 0.10 | 58.8 | 0.12 | |
≥30 min/session | 1.44 (0.25; 2.63) | Large | 3 | 38 | 78.0 | 0.02 | |||
Sprint test | <8 weeks | −1.39 (−2.29; −0.48) | Large | 5 | 50 | 72.0 | 0.003 | 0.0 | 0.40 |
≥8 weeks | −0.90 (−1.57; −0.23) | Moderate | 1 | 19 | NE | 0.008 | |||
<2 sessions/week | −1.75 (−3.14; −0.36) | Large | 2 | 17 | 62.0 | 0.01 | 0.0 | 0.38 | |
≥2 sessions/week | −1.03 (−1.82; −0.23) | Moderate | 4 | 52 | 68 | 0.01 | |||
≤16 sessions | −1.42 (−2.29; −0.56) | Large | 5 | 52 | 80 | 0.02 | 39.2 | 0.20 | |
>16 sessions | −0.70 (−1.39; 0) | Small | 1 | 17 | NE | 0.05 | |||
<30 min/session | −2.01 (−3.64; −0.37) | Very Large | 3 | 33 | 82.0 | 0.02 | 0 | 0.37 | |
≥30 min/session | −1.12 (−2.13; −0.11) | Large | 1 | 9 | NE | 0.03 | |||
COD test | <8 weeks | −0.78 (−1.34; −0.22) | Moderate | 2 | 27 | 0.0 | 0.006 | 91.0 | 0.0009 |
≥8 weeks | −2.80 (−3.86; −1.75) | Very Large | 2 | 16 | 0.0 | <0.00001 | |||
<2 sessions/week | −1.16 (−2.28; −0.03) | Large | 1 | 8 | NE | 0.04 | 0.0 | 0.77 | |
≥2 sessions/week | −0.97 (−1.48; −0.47) | Moderate | 3 | 35 | 0.0 | 0.0002 | |||
≤16 sessions | −1.64 (−2.72; −0.57) | Large | 4 | 43 | 74.0 | 0.003 | NE | NE | |
>16 sessions | NE | ||||||||
<30 min/session | −2.80 (−3.86; −1.75) | Very large | 2 | 16 | 0.0 | <0.00001 | NE | NE | |
≥30 min/session | NE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardos-Mainer, E.; Lozano, D.; Torrontegui-Duarte, M.; Cartón-Llorente, A.; Roso-Moliner, A. Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 401. https://doi.org/10.3390/ijerph18020401
Pardos-Mainer E, Lozano D, Torrontegui-Duarte M, Cartón-Llorente A, Roso-Moliner A. Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(2):401. https://doi.org/10.3390/ijerph18020401
Chicago/Turabian StylePardos-Mainer, Elena, Demetrio Lozano, Marcelino Torrontegui-Duarte, Antonio Cartón-Llorente, and Alberto Roso-Moliner. 2021. "Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 2: 401. https://doi.org/10.3390/ijerph18020401