Tailored Cigarette Warning Messages: How Individualized Loss Aversion and Delay Discounting Rates Can Influence Perceived Message Effectiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.2.1. Tobacco Use and Demographic Questions
2.2.2. Behavioral Economic Tasks
2.2.3. Message Delivery
2.2.4. Perceived Message Effectiveness
2.3. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Message Type
3.3. Individual Differences
3.4. Congruency
4. Discussion
4.1. Effects of Messages
4.2. Effects of Individual Differences
4.3. Congruency
5. Conclusions
5.1. Limitations and Future Directions
5.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byrne, S.; Greiner Safi, A.; Kemp, D.; Skurka, C.; Davydova, J.; Scolere, L.; Mathios, A.D.; Avery, R.J.; Dorf, M.C.; Steinhardt, J.; et al. Effects of Varying Color, Imagery, and Text of Cigarette Package Warning Labels among Socioeconomically Disadvantaged Middle School Youth and Adult Smokers. Health Commun. 2019, 34, 306–316. [Google Scholar] [CrossRef]
- Beltramini, R.F. Perceived Believability of Warning Label Information Presented in Cigarette Advertising. J. Advert. 1988, 17, 26–32. [Google Scholar] [CrossRef]
- Hammond, D.; Fong, G.T.; McDonald, P.W.; Brown, K.S.; Cameron, R. Showing leads to doing: Graphic cigarette warning labels are an effective public health policy. Eur. J. Public Health 2006, 16, 223–224. [Google Scholar] [CrossRef]
- Mercincavage, M.; Burdge, J.; Lochbuehler, K.; Souprountchouk, V.; McCullough, A.A.; Strasser, A.A. Visual Attention Patterns Differ by Pictorial Health Warning Label Features. Tob. Regul. Sci. 2018, 4, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econom. J. Econom. Soc. 1979, 47, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Camerer, C. Prospect theory in the wild: Evidence from the field. In Choices, Values, and Frames; Kahneman, D., Tversky, A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 288–300. [Google Scholar]
- Novemsky, N.; Kahneman, D. The boundaries of loss aversion. J. Mark. Res. 2005, 42, 119–128. [Google Scholar] [CrossRef]
- Barberis, N.C. Thirty years of prospect theory in economics: A review and assessment. J. Econ. Perspect. 2013, 27, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Toll, B.A.; Rojewski, A.M.; Duncan, L.R.; Latimer-Cheung, A.E.; Fucito, L.M.; Boyer, J.L.; O’Malley, S.S.; Salovey, P.; Herbst, R.S. “Quitting smoking will benefit your health”: The evolution of clinician messaging to encourage tobacco cessation. Clin. Cancer Res. 2014, 20, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steward, W.T.; Schneider, T.R.; Pizarro, J.; Salovey, P. Need for Cognition Moderates Responses to Framed Smoking-Cessation Messages 1. J. Appl. Soc. Psychol. 2003, 33, 2439–2464. [Google Scholar] [CrossRef]
- Schneider, T.R.; Salovey, P.; Pallonen, U.; Mundorf, N.; Smith, N.F.; Steward, W.T. Visual and auditory message framing effects on tobacco smoking 1. J. Appl. Soc. Psychol. 2001, 31, 667–682. [Google Scholar] [CrossRef]
- Gallagher, K.M.; Updegraff, J.A. Health message framing effects on attitudes, intentions, and behavior: A meta-analytic review. Ann. Behav. Med. 2012, 43, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Mays, D.; Turner, M.M.; Zhao, X.; Evans, W.D.; Luta, G.; Tercyak, K.P. Framing Pictorial Cigarette Warning Labels to Motivate Young Smokers to Quit. Nicotine Tob. Res. 2015, 17, 769–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal-Travers, M.; Hammond, D.; Smith, P.; Cummings, K.M. The impact of cigarette pack design, descriptors, and warning labels on risk perception in the U.S. Am. J. Prev. Med. 2011, 40, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, X.; Zhao, X.; Yang, B.; Iles, I. Effectiveness of cigarette warning labels: Examining the impact of graphics, message framing, and temporal framing. Health Commun. 2015, 30, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Romanowich, P.; Lamb, R.J. The effect of framing incentives as either losses or gains with contingency management for smoking cessation. Addict. Behav. 2013, 38, 2084–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Peterson, E. Effects of Temporal Framing on Response to Antismoking Messages: The Mediating Role of Perceived Relevance. J. Health Commun. 2017, 22, 37–44. [Google Scholar] [CrossRef]
- Zhao, X.; Nan, X.; Iles, I.A.; Yang, B. Temporal framing and consideration of future consequences: Effects on smokers’ and at-risk nonsmokers’ responses to cigarette health warnings. Health Commun. 2015, 30, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, G. Specious reward: A behavioral theory of impulsiveness and impulse control. Psychol. Bull. 1975, 82, 463–496. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.H.; Herrnstein, R.J. Choice and delay of reinforcement. J. Exp. Anal. Behav. 1967, 10, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Rachlin, H.; Green, L. Commitment, choice and self-control. J. Exp. Anal. Behav. 1972, 17, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amlung, M.; Vedelago, L.; Acker, J.; Balodis, I.; MacKillop, J. Steep delay discounting and addictive behavior: A meta-analysis of continuous associations. Addiction 2017, 112, 51–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, F.; Johnson, M.W.; Bickel, W.K. Delay discounting in current and never-before cigarette smokers: Similarities and differences across commodity, sign, and magnitude. J. Abnorm. Psychol. 2003, 112, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Bickel, W.K.; Marsch, L.A. Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction 2001, 96, 73–86. [Google Scholar] [CrossRef]
- Mollen, S.; Engelen, S.; Kessels, L.T.; van den Putte, B. Short and Sweet: The Persuasive Effects of Message Framing and Temporal Context in Antismoking Warning Labels. J. Health Commun. 2017, 22, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.C.; Beckmann, J.S.; Rush, C.R.; Stoops, W.W. A pilot study of loss aversion for drug and non-drug commodities in cocaine users. Drug Alcohol Depend. 2017, 180, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, W.Y.; Vasilev, G.; Lee, S.H.; Busemeyer, J.R.; Kruschke, J.K.; Bechara, A.; Vassileva, J. Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Front. Psychol. 2014, 5, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulka, L.M.; Eisenegger, C.; Preller, K.H.; Vonmoos, M.; Jenni, D.; Bendrick, K.; Baumgartner, M.R.; Seifritz, E.; Quednow, B.B. Altered social and non-social decision-making in recreational and dependent cocaine users. Psychol. Med. 2014, 44, 1015–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridberg, D.J.; Queller, S.; Ahn, W.Y.; Kim, W.; Bishara, A.J.; Busemeyer, J.R.; Porrino, L.; Stout, J.C. Cognitive Mechanisms Underlying Risky Decision-Making in Chronic Cannabis Users. J. Math. Psychol. 2010, 54, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Stoet, G. PsyToolkit: A software package for programming psychological experiments using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerstrom, K.O. The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire. Br. J. Addict. 1991, 86, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Fujie, S.; Camerer, C.; Arakawa, R.; Takano, H.; Kodaka, F.; Matsui, H.; Ideno, T.; Okubo, S.; Takemura, K.; et al. Norepinephrine in the brain is associated with aversion to financial loss. Mol. Psychiatry 2013, 18, 3–4. [Google Scholar] [CrossRef]
- Takeuchi, H.; Kawada, R.; Tsurumi, K.; Yokoyama, N.; Takemura, A.; Murao, T.; Murai, T.; Takahashi, H. Heterogeneity of Loss Aversion in Pathological Gambling. J. Gambl. Stud. 2016, 32, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Koffarnus, M.N.; Bickel, W.K. A 5-trial adjusting delay discounting task: Accurate discount rates in less than one minute. Exp. Clin. Psychopharmacol. 2014, 22, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Baig, S.A.; Noar, S.M.; Gottfredson, N.C.; Boynton, M.H.; Ribisl, K.M.; Brewer, N.T. UNC Perceived Message Effectiveness: Validation of a Brief Scale. Ann. Behav. Med. 2019, 53, 732–742. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thaler, R. Some empirical evidence on dynamic inconsistency. Econ. Lett. 1981, 8, 201–207. [Google Scholar] [CrossRef]
- Baucells, M.; Bellezza, S. Temporal profiles of instant utility during anticipation, event, and recall. Manag. Sci. 2017, 63, 729–748. [Google Scholar] [CrossRef] [Green Version]
- Molouki, S.; Hardisty, D.J.; Caruso, E.M. The Sign Effect in Past and Future Discounting. Psychol. Sci. 2019, 30, 1674–1695. [Google Scholar] [CrossRef]
- Athamneh, L.N.; Stein, J.S.; Bickel, W.K. Will delay discounting predict intention to quit smoking? Exp. Clin. Psychopharmacol. 2017, 25, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Amlung, M.; MacKillop, J. Clarifying the relationship between impulsive delay discounting and nicotine dependence. Psychol. Addict. Behav. 2014, 28, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern-Felsher, B.L.; Biehl, M.; Kropp, R.Y.; Rubinstein, M.L. Perceived risks and benefits of smoking: Differences among adolescents with different smoking experiences and intentions. Prev. Med. 2004, 39, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Cappella, J.N. Perceived Message Effectiveness Meets the Requirements of a Reliable, Valid, and Efficient Measure of Persuasiveness. J. Commun. 2018, 68, 994–997. [Google Scholar] [CrossRef]
- Noar, S.M.; Rohde, J.A.; Prentice-Dunn, H.; Kresovich, A.; Hall, M.G.; Brewer, N.T. Evaluating the actual and perceived effectiveness of e-cigarette prevention advertisements among adolescents. Addict. Behav. 2020, 109, 106473. [Google Scholar] [CrossRef] [PubMed]
- Bigsby, E.; Cappella, J.N.; Seitz, H.H. Efficiently and Effectively Evaluating Public Service Announcements: Additional Evidence for the Utility of Perceived Effectiveness. Commun. Monogr. 2013, 80, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.C.; Duke, J.; Shafer, P.; Patel, D.; Rodes, R.; Beistle, D. Perceived Effectiveness of Antismoking Ads and Association with Quit Attempts Among Smokers: Evidence from the Tips from Former Smokers Campaign. Health Commun. 2017, 32, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Krebs, P.; Prochaska, J.O.; Rossi, J.S. A meta-analysis of computer-tailored interventions for health behavior change. Prev. Med. 2010, 51, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.; Dockray, S.; Linehan, C. A systematic review of tailored eHealth interventions for weight loss. Digit. Health 2019, 5, 2055207619826685. [Google Scholar] [CrossRef]
- Sahin, C.; Courtney, K.L.; Naylor, P.J.; Rhodes, R.E. Tailored mobile text messaging interventions targeting type 2 diabetes self-management: A systematic review and a meta-analysis. Digit. Health 2019, 5, 2055207619845279. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, P.; Tsai, K.-Y.; Majmundar, A.; Allem, J.-P.; Soto, D.W.; Pattarroyo, M.; Unger, J.B.; Cruz, T.B. Do tobacco industry websites target content to specific demographic groups? Drug Alcohol Depend. 2020, 208, 107852. [Google Scholar] [CrossRef]
- Skurka, C.; Wheldon, C.W.; Eng, N. Targeted truth: An experiment testing the efficacy of counterindustry tobacco advertisements targeted to Black individuals and sexual and gender minority individuals. Nicotine Tob. Res. 2021, 23, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; Myerson, J. On the Complexity of Discounting, Choice Situations, and People. Perspect. Behav. Sci. 2019, 42, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Noar, S.M.; Barker, J.; Bell, T.; Yzer, M. Does Perceived Message Effectiveness Predict the Actual Effectiveness of Tobacco Education Messages? A Systematic Review and Meta-Analysis. Health Commun. 2020, 35, 148–157. [Google Scholar] [CrossRef]
- Brennan, E.; Durkin, S.J.; Wakefield, M.A.; Kashima, Y. Talking about antismoking campaigns: What do smokers talk about, and how does talk influence campaign effectiveness? J. Health Commun. 2016, 21, 33–45. [Google Scholar] [CrossRef]
- O’Keefe, D.J. Message pretesting using assessments of expected or perceived persuasiveness: Evidence about diagnosticity of relative actual persuasiveness. J. Commun. 2018, 68, 120–142. [Google Scholar] [CrossRef] [Green Version]
Exposure 1: Long-Term Gains | If you quit smoking cigarettes, you could add 10 years to your life. If you quit smoking cigarettes, your skin could look better for longer. If you quit smoking cigarettes, you could save thousands of dollars over 10 years. |
Exposure 2: Long-Term Losses | If you continue smoking cigarettes, you could cut up to 10 years off of your life. If you continue smoking cigarettes, you could age prematurely. If you continue smoking cigarettes, you could spend thousands of dollars over 10 years. |
Exposure 3: Short-Term Gains | If you quit smoking cigarettes, your breathing could improve in a month. If you quit smoking cigarettes, you wouldn’t smell like smoke. If you quit smoking cigarettes, you could immediately have more money for other things you enjoy. |
Exposure 4: Short-Term Losses | If you continue smoking cigarettes, you could have trouble climbing stairs this month. If you continue smoking cigarettes, you could smell like smoke. If you continue smoking cigarettes, you are spending money that you could be using right now on other things you enjoy. |
Exposure Control: Hours of Watching Television | Watching several hours of television could affect your health. There is a correlation between the number of hours that one watches television and one’s body fat mass. Time watching television could influence how you see the world. |
Variable | Loss Aversion Coefficient | ||
---|---|---|---|
Delay Discounting Rate | High Sensitivity to Loss | Low Sensitivity to Loss | |
High Discounting Rate | Short-term, loss message | Short-term, gain message | |
Low Discounting Rate | Long-term, loss message | Long-term, gain message |
Variable | Control (n = 101) | Long-Term Gain (n = 102) | Long-Term Loss (n = 103) | Short-Term Gain (n = 102) | Short-Term Loss (n = 104) |
---|---|---|---|---|---|
Mean (SD)/% | Mean (SD)/% | Mean (SD)/% | Mean (SD)/% | Mean (SD)/% | |
Demographic | |||||
Age | 39.9 (11.1) | 41.6 (12.5) | 41.5 (11.2) | 40.0 (11.4) | 40.7 (11.9) |
Female | 69.3% | 57.8% | 55.9% | 61.4% | 66.4% |
Married | 50.5% | 52.0% | 48.5% | 46.1% | 51.0% |
White | 90.1% | 89.2% | 89.3% | 87.3% | 88.5% |
College Education | 46.5% | 45.1% | 46.6% | 52.0% | 45.2% |
Income a | 4.1 (1.8) | 3.9 (1.8) | 3.9 (1.7) | 3.8 (1.8) | 3.9 (1.9) |
Substance Use | |||||
Past Month Vaping | 43.6% | 43.1% | 41.8% | 42.2% | 41.4% |
Cigarettes/Day | 14.2 (6.6) | 14.9 (7.7) | 15.2 (9.6) | 14.7 (13.1) | 14.1 (7.6) |
FTND | 4.4 (2.1) | 4.7 (2.1) | 4.7 (2.2) | 4.5 (2.4) | 4.8 (2.2) |
Perceived Quit Efficacy b | 0.8 (0.9) | 0.9 (1) | 0.8 (0.8) | 0.7 (0.8) | 0.8 (0.9) |
Behavioral Economic | |||||
Gain Discounting (Log) | −2.4 (0.8) | −2.3 (0.8) | −2.4 (0.7) | −2.1 (0.9) | −2.3 (0.9) |
Loss Discounting (Log) | −2.7 (1.2) | −2.7 (1.1) | −2.6 (1.3) | −2.9 (1.2) | −2.8 (1.2) |
Loss Aversion | 4.0 (3.0) | 4.4 (3.3) | 4.0 (3.2) | 3.9 (3.4) | 3.6 (3.2) |
Variable | Control | Long-Gain | Long-Loss | Short-Gain | Short-Loss |
---|---|---|---|---|---|
Total PME Score | 5.5 (2.8) | 11.6 (2.8) | 12.1 (2.5) | 10.9 (2.9) | 11.1 (2.9) |
Discourage from Smoking | 1.8 (0.9) | 3.6 (1.1) | 3.7 (1.0) | 3.5 (1.1) | 3.4 (1.1) |
Make Smoking Seem Unpleasant | 1.8 (1.1) | 3.9 (1.1) | 4.2 (1.0) | 3.6 (1.1) | 3.9 (1.1) |
Concerned about Health Consequences | 2.0 (1.2) | 4.1 (1.1) | 4.2 (1.0) | 3.8 (1.2) | 3.8 (1.1) |
Variable | Total PME Score | Discourage | Unpleasant | Health Consequence | ||||
---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |
Message Type | ||||||||
Long-Term Message | 0.14 | 0.004 | 0.10 | 0.046 | 0.12 | 0.015 | 0.15 | 0.003 |
Loss-Framed Message | −0.05 | 0.259 | 0.01 | 0.826 | −0.12 | 0.015 | −0.03 | 0.513 |
Individual Difference | ||||||||
Age | 0.13 | 0.016 | 0.09 | 0.091 | 0.12 | 0.029 | 0.12 | 0.021 |
Female | −0.06 | 0.261 | −0.05 | 0.348 | −0.08 | 0.140 | −0.02 | 0.629 |
Married | 0.08 | 0.129 | 0.03 | 0.528 | 0.08 | 0.112 | 0.09 | 0.098 |
White | −0.06 | 0.214 | −0.03 | 0.497 | −0.03 | 0.561 | −0.10 | 0.057 |
College Education | 0.01 | 0.793 | −0.01 | 0.853 | 0.04 | 0.379 | 0.00 | 0.976 |
Income | 0.02 | 0.721 | 0.07 | 0.170 | −0.06 | 0.264 | 0.04 | 0.490 |
Past Month Vaping | −0.06 | 0.245 | −0.05 | 0.321 | −0.04 | 0.413 | −0.06 | 0.240 |
Cigarettes/Day | −0.04 | 0.496 | −0.08 | 0.175 | −0.01 | 0.908 | −0.02 | 0.762 |
FTND | 0.02 | 0.757 | 0.07 | 0.248 | −0.01 | 0.835 | −0.01 | 0.904 |
Perceived Quit Efficacy | 0.16 | 0.002 | 0.17 | 0.001 | 0.09 | 0.067 | 0.15 | 0.003 |
Gain Discounting (Log) | −0.11 | 0.030 | −0.20 | <0.001 | −0.09 | 0.103 | −0.01 | 0.839 |
Loss Discounting (Log) | −0.06 | 0.258 | −0.03 | 0.515 | −0.07 | 0.198 | −0.05 | 0.337 |
Loss Aversion | −0.10 | 0.043 | −0.13 | 0.015 | −0.06 | 0.225 | −0.08 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripp, H.L.; Strickland, J.C.; Mercincavage, M.; Audrain-McGovern, J.; Donny, E.C.; Strasser, A.A. Tailored Cigarette Warning Messages: How Individualized Loss Aversion and Delay Discounting Rates Can Influence Perceived Message Effectiveness. Int. J. Environ. Res. Public Health 2021, 18, 10492. https://doi.org/10.3390/ijerph181910492
Tripp HL, Strickland JC, Mercincavage M, Audrain-McGovern J, Donny EC, Strasser AA. Tailored Cigarette Warning Messages: How Individualized Loss Aversion and Delay Discounting Rates Can Influence Perceived Message Effectiveness. International Journal of Environmental Research and Public Health. 2021; 18(19):10492. https://doi.org/10.3390/ijerph181910492
Chicago/Turabian StyleTripp, Hollie L., Justin C. Strickland, Melissa Mercincavage, Janet Audrain-McGovern, Eric C. Donny, and Andrew A. Strasser. 2021. "Tailored Cigarette Warning Messages: How Individualized Loss Aversion and Delay Discounting Rates Can Influence Perceived Message Effectiveness" International Journal of Environmental Research and Public Health 18, no. 19: 10492. https://doi.org/10.3390/ijerph181910492