Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Meteorological Observation Dataset
2.3. Meteorological Forecast Model Dataset
2.4. Heat Stress Indicator
- -
- Dry-bulb temperature (Ta), measured with a thermometer shaded from direct heat radiation.
- -
- Natural wet-bulb temperature (Tnwb), measured with a wetted thermometer exposed to the actual wind and heat radiation.
- -
- Black Globe Temperature (Tg), measured inside a 150mm diameter black globe.
2.5. Data Analysis and Forecast Evaluation Metrics
- -
- Hit rate (HR): Correct predictions probability (%) on the total of events (including class 0).
- -
- Critical success index (CSI): Correct predictions probability (%) considering only RL ≥ 1.
- -
- Probability of detection (POD): Correct predictions probability (%) of any class. This skill was calculated for RL1 (POD1), RL2 (POD2), and RL3 (POD3). POD was also calculated, also considering the forecast of a higher class than the observed as correct. This was carried out for both RL1 (POD1x) and RL2 (POD2x).
- -
- Lack alarm ratio (NA): The probability (%) that if RL0 was predicted, a higher class has been observed instead.
- -
- False alarm ratio (FA): The probability (%) that if RL0 is observed, a higher class has been predicted instead.
- -
- Normalized lack alarm ratio (NA*): Lack alarm probability (%) normalized on the total number of hours analyzed.
- -
- Normalized false alarm ratio (FA*): False alarm probability (%) normalized on the total number of hours analyzed.
3. Results
Day2-WBGT Forecast Validation (Period May-September, Time Slot 12–18 All the Hour)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Messeri, A.; Morabito, M.; Messeri, G.; Brandani, G.; Petralli, M.; Natali, F.; Grifoni, D.; Crisci, A.; Gensini, G.; Orlandini, S. Weather-Related Flood and Landslide Damage: A Risk Index for Italian Regions. PLoS ONE 2015, 10, e0144468. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Kjellstrom, T.; Maıtre, N.; Saget, C.; Otto, M.; Karimova, T. Working on a Warmer Planet: The Effect of Heat Stress on Productivity and Decent Work; Report of the International Labour Office (ILO): Geneva, Switzerland, 2019; Available online: https://www.ilo.org/global/publications/books/WCMS_711919/lang–en/index.htm (accessed on 28 July 2021).
- Moda, H.M.; Filho, W.L.; Minhas, A. Moda Impacts of Climate Change on Outdoor Workers and their Safety: Some Research Priorities. Int. J. Environ. Res. Public Health 2019, 16, 3458. [Google Scholar] [CrossRef] [Green Version]
- NIOSH. NIOSH Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; Jacklitsch, B., Williams, W.J., Musolin, K., Coca, A., Kim, J.-H., Turner, N., Eds.; DHHS (NIOSH) Publication 2016-106; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2016. Available online: https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf?id=10.26616/NIOSHPUB2016106 (accessed on 28 July 2021).
- Gun, R. Deaths in Australia from Work-Related Heat Stress, 2000–2015. Int. J. Environ. Res. Public Health 2019, 16, 3458. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.H.; Rothmore, P.; Giles, L.C.; Varghese, B.M.; Bi, P. Extreme heat and occupational injuries in different climate zones: A systematic review and meta-analysis of epidemiological evidence. Environ. Int. 2021, 148, 106384. [Google Scholar] [CrossRef]
- Adam-Poupart, A.; Smargiassi, A.; Busque, M.-A.; Duguay, P.; Fournier, M.; Zayed, J.; Labrèche, F. Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada). Occup. Environ. Med. 2015, 72, 338–345. [Google Scholar] [CrossRef]
- Martínez-Solanas, È.; López-Ruiz, M.; Wellenius, G.; Gasparrini, A.; Sunyer, J.; Benavides, F.G.; Basagaña, X. Evaluation of the Impact of Ambient Temperatures on Occupational Injuries in Spain. Environ. Health Perspect. 2018, 126, 067002. [Google Scholar] [CrossRef]
- Schermann, H.; Craig, E.; Yanovich, E.; Ketko, I.; Kalmanovich, G.; Yanovich, R. Probability of Heat Intolerance: Standardized Interpretation of Heat-Tolerance Testing Results Versus Specialist Judgment. J. Athl. Train. 2018, 53, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, R.; Cappadona, R.; Fabbian, F. Heat Stress and Cardiovascular Mortality in Immigrant Workers: Can We Do Something More? Cardiology 2019, 143, 49–51. [Google Scholar] [CrossRef]
- Messeri, A.; Morabito, M.; Bonafede, M.; Bugani, M.; Levi, M.; Baldasseroni, A.; Binazzi, A.; Gozzini, B.; Orlandini, S.; Nybo, L.; et al. Heat Stress Perception among Native and Migrant Workers in Italian Industries-Case Studies from the Construction and Agricultural Sectors. Int. J. Environ. Res. Public Health 2019, 16, 1090. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of Existing Heat-Health Warning Systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Chan, A.P.; Wang, X.; Wang, J. Development of an early-warning system for site work in hot and humid environments: A case study. Autom. Constr. 2016, 62, 101–113. [Google Scholar] [CrossRef]
- Morabito, M.; Messeri, A.; Noti, P.; Casanueva, A.; Crisci, A.; Kotlarski, S.; Orlandini, S.; Schwierz, C.; Spirig, C.; Kingma, B.R.; et al. An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform. Int. J. Environ. Res. Public Health 2019, 16, 2890. [Google Scholar] [CrossRef] [Green Version]
- ISO 7243. Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index, 3rd ed.; ISO/TC 159/SC 5 Ergonomics of the Physical Environment; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO 7933. Ergonomics of the Thermal Environment. Analytical Determination and Interpretation of Heat Stress using Calculation of the Predicted Heat Strain; ISO/TC 159/SC 5 Ergonomics of the physical environment; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Minard, D.; Belding, H.S.; Kingston, J.R. Prevention of heat casualties. JAMA 1957, 165, 1813–1818. [Google Scholar] [CrossRef]
- Parson, K.C. Human Thermal Environment: The Effects of Hot, Moderate and Cold Temperatures on Human Health, Comfort and Performance, 2nd ed.; Taylor & Francis: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Gao, C.; Kuklane, K.; Östergren, P.-O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 2017, 62, 359–371. [Google Scholar] [CrossRef]
- Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.; Brown, B.G.; Mason, S. Forecast verification: Current status and future directions. Meteorol. Appl. 2008, 15, 3–18. [Google Scholar] [CrossRef]
- Ford, T.W.; Dirmeyer, P.A.; Benson, D.O. Evaluation of heat wave forecasts seamlessly across subseasonal timescales. NPJ Clim. Atmos. Sci. 2018, 1, 20. [Google Scholar] [CrossRef]
- Gómez, I.; Estrela, M.J.; Caselles, V. Verification of the RAMS-based operational weather forecast system in the Valencia Region: A seasonal comparison. Nat. Hazards 2014, 75, 1941–1958. [Google Scholar] [CrossRef]
- Ferretti, R.; Paolucci, T.; Giuliani, G.; Cherubini, T.; Bernardini, L.; Visconti, G. Verification of high-resolution real-time forecasts over the Alpine region during the MAP SOP. Q. J. R. Meteorol. Soc. 2003, 129, 587–607. [Google Scholar] [CrossRef]
- Roeger, C.; Stull, R.; McClung, D.; Hacker, J.; Deng, X.; Modzelewski, H. Verification of Mesoscale Numerical Weather Forecasts in Mountainous Terrain for Application to Avalanche Prediction. Weather. Forecast. 2003, 18, 1140–1160. [Google Scholar] [CrossRef]
- Cookson-Hills, P.; Kirshbaum, D.J.; Surcel, M.; Doyle, J.G.; Fillion, L.; Jacques, D.; Baek, S.-J. Verification of 24-h Quantitative Precipitation Forecasts over the Pacific Northwest from a High-Resolution Ensemble Kalman Filter System. Weather. Forecast. 2017, 32, 1185–1208. [Google Scholar] [CrossRef]
- Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.; Cloke, H.L. Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2014, 59, 311–323. [Google Scholar] [CrossRef] [Green Version]
- WMOa. Guide to Meteorological Instruments and Methods of Observation, 6th ed.; WMO-No. 8; World Meteorological Organization: Geneva, Switzerland, 1996. [Google Scholar]
- WMOb. Guide to Meteorological Instruments and Methods of Observation; WMO Technical Publication No. 8; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Buzzi, A.; Fantini, M.; Malguzzi, P.; Nerozzi, F. Validation of a limited area model in cases of mediterranean cyclogenesis: Surface fields and precipitation scores. Theor. Appl. Clim. 1994, 53, 137–153. [Google Scholar] [CrossRef]
- Buzzi, A.; Foschini, L. Mesoscale Meteorological Features Associated with Heavy Precipitation in the Southern Alpine Region. Theor. Appl. Clim. 2000, 72, 131–146. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground). Tr. Geofiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Zampieri, M.; Malguzzi, P.; Buzzi, A. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: A flash flood case study in the Western Mediterranean. Nat. Hazards Earth Syst. Sci. 2005, 5, 603–612. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Morcrette, J.J. Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res. 1991, 96, 9121–9132. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Space Phys. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Gyakum, J.R.; Carrera, M.; Zhang, D.-L.; Miller, S.; Caveen, J.; Benoit, R.; Black, T.; Buzzi, A.; Chouinard, C.; Fantini, M.; et al. A Regional Model Intercomparison Using a Case of Explosive Oceanic Cyclogenesis. Weather. Forecast. 1996, 11, 521–543. [Google Scholar] [CrossRef]
- Castelli, S.T.; Bisignano, A.; Donateo, A.; Landi, T.C.; Martano, P.; Malguzzi, P. Evaluation of the turbulence parametrization in the MOLOCH meteorological model. Q. J. R. Meteorol. Soc. 2019, 146, 124–140. [Google Scholar] [CrossRef]
- Bougeault, P.; Binder, P.; Buzzi, A.; Dirks, R.; Kuettner, J.; Houze, R.; Smith, R.B.; Steinacker, R.; Volkert, H. The MAP Special Observing Period. Bull. Am. Meteor. Soc. 2001, 82, 433–462. [Google Scholar] [CrossRef] [Green Version]
- Tettamanti, R.; Malguzzi, P.; Zardi, D. Numerical simulation of katabatic winds with a non-hydrostatic meteorological model. Polar Atmos. 2002, 1, 1–95. [Google Scholar]
- Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic triggering of long lived convection in three dimensions. Theor. Appl. Clim. 2008, 103, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Bartzokas, A.; Azzopardi, J.; Bertotti, L.; Buzzi, A.; Cavaleri, L.; Conte, D.; Davolio, S.; Dietrich, S.; Drago, A.; Drofa, O.; et al. The RISKMED project: Philosophy, methods and products. Nat. Hazards Earth Syst. Sci. 2010, 10, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D.; Buzzi, A. The Piedmont flood of November 1994: A testbed of forecasting capabilities of the CNR-ISAC meteorological model suite. Bull. Atmosph. Sci. Technol. 2020, 1, 263–282. [Google Scholar] [CrossRef]
- Yaglou, C.P.; Minard, D. Control of heat casualties at military training centers. Am. Med. Assoc. Ind. Health 1957, 16, 302–316. [Google Scholar]
- Lemke, B.; Kjellstrom, T. Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Ind. Health 2012, 50, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Bernard, T.E. Prediction of Workplace Wet Bulb Global Temperature. Appl. Occup. Environ. Hyg. 1999, 14, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Liljegren, J.C.; Carhart, R.A.; Lawday, P.; Tschopp, S.; Sharp, R. Modeling the Wet Bulb Globe Temperature Using Standard Meteorological Measurements. J. Occup. Environ. Hyg. 2008, 5, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.A.; Wilks, D.S. Statistical Methods in the Atmospheric Sciences. J. Am. Stat. Assoc. 2000, 95, 344. [Google Scholar] [CrossRef]
- Palmer, T. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 2000, 63, 71–116. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R.; Houtekamer, P.L.; Pellerin, G.; Toth, Z.; Zhu, Y.; Wei, M. A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Weather Rev. 2005, 133, 1076–1097. [Google Scholar] [CrossRef]
- Lorenz, E.N. A study of the predictability of a 28-variable atmospheric model. Tellus 1965, 17, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R. Horizontal resolution impact on short- and long-range forecast error. Q. J. R. Meteorol. Soc. 2010, 136, 1020–1035. [Google Scholar] [CrossRef]
- Mesinger, F.; Veljovic, K. Topography in Weather and Climate Models: Lessons from Cut-Cell Eta vs. European Centre for Medium-Range Weather Forecasts Experiments. J. Meteorol. Soc. Jpn. 2020, 98, 881–900. [Google Scholar] [CrossRef]
- Sandu, I.; Van Niekerk, A.; Shepherd, T.G.; Vosper, S.B.; Zadra, A.; Bacmeister, J.; Beljaars, A.; Brown, A.R.; Dörnbrack, A.; McFarlane, N.; et al. Impacts of orography on large-scale atmospheric circulation. NPJ Clim. Atmos. Sci. 2019, 2, 10. [Google Scholar] [CrossRef]
- De Perez, E.C.; Van Aalst, M.; Bischiniotis, K.; Mason, S.; Nissan, H.; Pappenberger, F.; Stephens, E.; Zsoter, E.; Van den Hurk, B. Global predictability of temperature extremes. Environ. Res. Lett. 2018, 13, 054017. [Google Scholar]
- Chatzidimitriou, A.; Chrissomallidou, A.; Yannas, S. Ground surface materials and microclimates in urban open spaces. In Proceedings of the PLEA2006-The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006. [Google Scholar]
- Shahrestani, M.; Yao, R.; Luo, Z.; Turkbeyler, E.; Davies, H. A field study of urban microclimates in London. Renew. Energy 2015, 73, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, P.; Goswami, A.; Bonafoni, S. The Impact of the Land Cover Dynamics on Surface Urban Heat Island Variations in Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors 2019, 19, 3701. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total. Environ. 2020, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Lazinger, A. The verification of weather parameters. In Proceedings of the Seminar on Parametrization of Sub-grid Scale Physical Processes, Berkshire, UK, 5–9 September 1994; Available online: https://www.ecmwf.int/node/10645 (accessed on 28 July 2021).
- Martin, G.M.; Milton, S.F.; Senior, C.A.; Brooks, M.; Ineson, S.; Reichler, T.; Kim, J. Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate. J. Clim. 2010, 23, 5933–5957. [Google Scholar] [CrossRef]
- McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; WMO-No. 1142; World Meteorological Organization and World Health Organization: Geneva, Switzerland, 2015; ISBN 978-92-63-11142-5. Available online: http://www.who.int/globalchange/publications/ (accessed on 28 July 2021).
- DHS. Heatwave Planning Guide Development of Heatwave Plans in Local Councils in Victoria; Environmental Health Unit Rural and Regional Health and Aged Care Services Division Victorian Government Department of Human Services: Melbourne, Australia, 2009; ISBN 073-116-332X. [Google Scholar]
- Burgstall, A.; Casanueva, A.; Kotlarski, S.; Schwierz, C. Heat Warnings in Switzerland: Reassessing the Choice of the Current Heat Stress Index. Int. J. Environ. Res. Public Health 2019, 16, 2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascal, M.; Laaidi, K.; Wagner, V.; Ung, A.B.; Smaili, S.; Fouillet, A.; Caserio-Schönemann, C.; Beaudeau, P. How to use near real-time health indicators to support decision-making during a heat wave: The example of the French heat wave warning system. PLoS Curr. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Trigo, I.F.; DaCamara, C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-De-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
A | B | C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Location | Lat | Lon | Alt | Localion | Lat | Lon | Alt | Localion | Lat | Lon | Alt |
Bolzano | 46.46 | 11.32 | 262 | Venice | 45.47 | 12.34 | 5 | Florence | 43.80 | 11.2 | 50 |
Bergamo | 45.66 | 9.7 | 237 | Rimini | 44.02 | 12.61 | 13 | Montopoli | 43.66 | 10.74 | 29 |
Milan | 45.63 | 8.72 | 212 | Pescara | 42.43 | 14.18 | 11 | Legoli | 43.56 | 10.8 | 180 |
Brescia | 45.42 | 10.28 | 97 | Roma | 41.80 | 12.23 | 5 | Cesa | 43.30 | 11.82 | 246 |
Verona | 45.38 | 10.87 | 68 | Olbia | 40.89 | 9.51 | 13 | Foligno | 42.95 | 12.67 | 224 |
Turin | 45.20 | 7.64 | 287 | Naples | 40.88 | 14.29 | 72 | Braccagni | 42.93 | 11.08 | 40 |
Bologna | 44.53 | 11.29 | 37 | Alghero | 40.63 | 8.28 | 40 | Grosseto | 42.74 | 11.05 | 7 |
Lecce | 40.23 | 18.13 | 53 | Decimomannu | 39.34 | 8.86 | 24 | ||||
Capo Bellavista | 39.93 | 9.71 | 150 | Lamezia | 38.90 | 16.24 | 16 | ||||
Cagliari | 39.25 | 9.05 | 3 | ||||||||
Palermo | 38.18 | 13.09 | 44 | ||||||||
Catania | 37.46 | 15.06 | 17 |
RLO | |||||
RLP | 0 | 1 | 2 | 3 | |
0 | C00 | C10 | C20 | C30 | |
1 | C01 | C11 | C21 | C31 | |
2 | C02 | C12 | C22 | C32 | |
3 | C03 | C13 | C23 | C33 |
A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | BOL | MOL_E | MOL_G | BOL | MOL_E | MOL_G | BOL | MOL_E | MOL_G |
Data | 1908 | 1968 | 1920 | 1902 | 1962 | 1914 | 1896 | 1956 | 1908 |
HR | 82.9 | 79.6 | 80.2 | 80.0 | 79.1 | 78.3 | 74.5 | 78.9 | 79.7 |
CSI | 78.3 | 75.0 | 75.4 | 75.7 | 74.9 | 73.6 | 69.2 | 75.2 | 75.9 |
POD1 | 81.2 | 78.0 | 79.1 | 84.2 | 82.2 | 84.0 | 79.9 | 80.2 | 81.9 |
POD2 | 89.2 | 92.1 | 90.9 | 73.6 | 74.6 | 67.8 | 61.9 | 79.9 | 79.1 |
POD3 | |||||||||
POD1x | 96.2 | 98.1 | 97.2 | 94.9 | 95.4 | 95.0 | 87.8 | 93.8 | 94.4 |
POD2x | 89.5 | 92.4 | 91.6 | 73.6 | 74.6 | 67.8 | 61.9 | 80.1 | 79.1 |
NA | 8.5 | 5.3 | 7.0 | 12.0 | 11.0 | 11.5 | 24.3 | 16.9 | 15.0 |
FA | 19.7 | 28.2 | 26.1 | 16.8 | 19.8 | 19.1 | 11.1 | 19.9 | 18.9 |
NA* | 2.0 | 1.0 | 1.5 | 2.4 | 2.1 | 2.3 | 5.6 | 2.8 | 2.6 |
FA* | 5.0 | 7.2 | 7.0 | 3.7 | 4.2 | 4.2 | 2.2 | 3.9 | 3.8 |
RLO 1 | 53.1 | 53.0 | 52.7 | 47.3 | 47.4 | 47.2 | 48.2 | 47.7 | 48.1 |
RLO 2 | 20.8 | 21.5 | 20.6 | 30.8 | 31.3 | 30.7 | 32.2 | 33.1 | 32.0 |
RLO 3 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
RLP 1 | 50.2 | 50.1 | 50.2 | 52.1 | 51.2 | 53.7 | 54.0 | 49.3 | 50.4 |
RLP 2 | 26.6 | 30.4 | 28.4 | 27.6 | 29.8 | 26.3 | 23.4 | 32.9 | 31.2 |
RLP 3 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 |
A | B | B | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | BOL | MOL_E | MOL_G | BOL_G | MOL_E | MOL_G | BOL_G | MOL_E | MOL_G |
MAE | 1.1 | 1.2 | 1.1 | 1.0 | 1.1 | 1.1 | 1.4 | 1.1 | 1.1 |
RMSE | 1.4 | 1.5 | 1.5 | 1.3 | 1.4 | 1.4 | 1.7 | 1.5 | 1.4 |
ME | 0.4 | 0.7 | 0.7 | −0.2 | −0.1 | −0.1 | −0.8 | 0.0 | −0.1 |
Data | 1908 | 1968 | 1920 | 1902 | 1962 | 1914 | 1897 | 1957 | 1909 |
MAEmax | 1.0 | 1.1 | 1.1 | 1.0 | 1.1 | 1.1 | 1.4 | 1.1 | 1.0 |
RMSEmax | 1.3 | 1.4 | 1.4 | 1.3 | 1.4 | 1.4 | 1.7 | 1.4 | 1.3 |
MEmax | 0.3 | 0.8 | 0.8 | −0.3 | −0.1 | −0.2 | −0.9 | 0.0 | 0.0 |
Datamax | 318 | 328 | 320 | 318 | 328 | 320 | 316 | 326 | 318 |
A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | BOL | MOL_E | MOL_G | BOL | MOL_E | MOL_G | BOL | MOL_E | MOL_G |
Data | 1902 | 1962 | 1914 | 1898 | 1958 | 1910 | 1892 | 1952 | 1904 |
HR | 77.5 | 75.8 | 76.1 | 80.7 | 79.6 | 80.2 | 75.0 | 79.7 | 79.7 |
CSI | 74.3 | 72.6 | 72.8 | 78.5 | 77.3 | 77.9 | 71.8 | 77.5 | 77.5 |
POD1 | 71.8 | 67.2 | 68.5 | 76.7 | 74.7 | 78.2 | 74.3 | 75.3 | 76.2 |
POD2 | 87.6 | 89.3 | 89.3 | 88.0 | 86.3 | 85.4 | 78.4 | 88.3 | 88.1 |
POD3 | |||||||||
POD1x | 95.0 | 96.4 | 96.2 | 94.5 | 94.4 | 94.8 | 86.9 | 92.5 | 93.3 |
POD2x | 91.2 | 94.1 | 93.1 | 88.5 | 87.6 | 86.3 | 78.9 | 89.9 | 89.6 |
NA | 12.3 | 7.7 | 9.7 | 15.7 | 14.5 | 13.7 | 26.9 | 17.9 | 17.5 |
FA | 31.4 | 33.4 | 34.3 | 24.6 | 25.4 | 26.2 | 20.1 | 26.4 | 27.0 |
NA* | 1.8 | 1.0 | 1.3 | 1.8 | 1.7 | 1.6 | 4.3 | 2.0 | 1.9 |
FA* | 5.7 | 5.9 | 6.4 | 3.5 | 3.4 | 3.7 | 2.9 | 3.7 | 3.8 |
RLO 1 | 41.4 | 41.2 | 41.4 | 35.5 | 34.9 | 35.5 | 36.5 | 35.8 | 36.8 |
RLO 2 | 39.8 | 40.2 | 39.4 | 49.2 | 50.2 | 49.0 | 47.9 | 48.7 | 47.4 |
RLO 3 | 0.6 | 0.9 | 0.6 | 1.7 | 1.7 | 1.7 | 2.2 | 2.4 | 2.2 |
RLP 1 | 38.7 | 35.8 | 37.3 | 36.4 | 35.6 | 37.9 | 40.3 | 35.3 | 36.8 |
RLP 2 | 45.2 | 48.9 | 47.3 | 51.3 | 52.0 | 49.6 | 44.4 | 51.8 | 50.4 |
RLP 3 | 1.8 | 2.5 | 1.9 | 0.4 | 1.0 | 0.7 | 0.5 | 1.5 | 1.1 |
A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | BOL | MOL_E | MOL_G | BOL | MOL_E | MOL_G | BOL_G | MOL_E | MOL_G |
MAE | 1.3 | 1.4 | 1.4 | 1.2 | 1.2 | 1.2 | 1.4 | 1.4 | 1.4 |
RMSE | 1.8 | 1.9 | 1.8 | 1.6 | 1.6 | 1.6 | 1.8 | 1.8 | 1.7 |
ME | 0.7 | 1.0 | 0.9 | 0.0 | 0.1 | 0.0 | 0.1 | 0.5 | 0.5 |
Data | 1902 | 1962 | 1914 | 1898 | 1958 | 1910 | 1905 | 1965 | 1917 |
MAEmax | 1.1 | 1.2 | 1.2 | 1.1 | 1.2 | 1.2 | 1.4 | 1.3 | 1.3 |
RMSEmax | 1.5 | 1.6 | 1.6 | 1.4 | 1.5 | 1.5 | 1.7 | 1.6 | 1.6 |
MEmax | 0.4 | 0.9 | 0.9 | −0.2 | 0.0 | −0.1 | 0.0 | 0.6 | 0.5 |
Datamax | 318 | 328 | 320 | 318 | 328 | 320 | 318 | 328 | 320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grifoni, D.; Messeri, A.; Crisci, A.; Bonafede, M.; Pasi, F.; Gozzini, B.; Orlandini, S.; Marinaccio, A.; Mari, R.; Morabito, M.; et al. Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy. Int. J. Environ. Res. Public Health 2021, 18, 9940. https://doi.org/10.3390/ijerph18189940
Grifoni D, Messeri A, Crisci A, Bonafede M, Pasi F, Gozzini B, Orlandini S, Marinaccio A, Mari R, Morabito M, et al. Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy. International Journal of Environmental Research and Public Health. 2021; 18(18):9940. https://doi.org/10.3390/ijerph18189940
Chicago/Turabian StyleGrifoni, Daniele, Alessandro Messeri, Alfonso Crisci, Michela Bonafede, Francesco Pasi, Bernardo Gozzini, Simone Orlandini, Alessandro Marinaccio, Riccardo Mari, Marco Morabito, and et al. 2021. "Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy" International Journal of Environmental Research and Public Health 18, no. 18: 9940. https://doi.org/10.3390/ijerph18189940
APA StyleGrifoni, D., Messeri, A., Crisci, A., Bonafede, M., Pasi, F., Gozzini, B., Orlandini, S., Marinaccio, A., Mari, R., Morabito, M., & on behalf of the WORKLIMATE Collaborative Group. (2021). Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy. International Journal of Environmental Research and Public Health, 18(18), 9940. https://doi.org/10.3390/ijerph18189940