Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Marrow Adipose Tissue (MAT)
3.2. Leptin
3.3. Adiponectin
3.4. Insulin Resistance
3.5. Cross Talk between Mat, Adipokines, Insulin, and Bone
3.6. Bone Mineral Density in CGL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Berardinelli, W. An undiagnosed endocrinometabolic syndrome: Report of 2 cases. J. Clin. Endocrinol. Metab. 1954, 14, 193–204. [Google Scholar] [CrossRef]
- Brunzell, J.D.; Shankle, S.W.; Bethune, J.E. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann. Intern. Med. 1968, 69, 501–516. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, A.S.C.; Ferreira, L.C.; Lima, J.G.; Medeiros, L.B.A.; Cunha, P.T.B.; Agnez-Lima, L.F.; Ururahy, M.A.G.; Campos, J.T.A.M. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. Mutat. Res. Rev. Mutat. Res. 2019, 781, 30–52. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Kircher, M.; del Campo, M.; Amato, R.S.; Agarwal, A.K. University of Washington Center for Mendelian Genomics. Whole exome sequencing identifies de novo heterozygousCAV1mutations associated with a novel neonatal onset lipodystrophy syndrome. Am. J. Med Genet. Part A 2015, 167, 1796–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patni, N.; Garg, A. Congenital generalized lipodystrophies—New insights into metabolic dysfunction. Nat. Rev. Endocrinol. 2015, 11, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Garg, A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 2004, 350, 1220–1234. [Google Scholar] [CrossRef]
- Lima, J.; dos Santos, M.; de Melo Campos, J.T.A. Congenital Generalized Lipodystrophy. J. Rare Dis. Res. Treat. 2018, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.G.; Nobrega, L.H.C.; De Lima, N.N.; Santos, M.G.D.N.; Baracho, M.F.P.; Jeronimo, S.M.B. Clinical and laboratory data of a large series of patients with congenital generalized lipodystrophy. Diabetol. Metab. Syndr. 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Gomes, K.B.; Pardini, V.C.; Fernandes, A.P. Clinical and molecular aspects of Berardinelli–Seip Congenital Lipodystrophy (BSCL). Clin. Chim. Acta 2009, 402, 1–6. [Google Scholar] [CrossRef]
- Haque, W.A.; Shimomura, I.; Matsuzawa, Y.; Garg, A. Serum adiponectin and leptin levels in patients with lipo-dystrophies. J. Clin. Endocrinol. Metab. 2015, 87, 2395–2398. [Google Scholar] [CrossRef]
- Ponte, C.M.M.; Fernandes, V.O.; Gurgel, M.H.C.; Vasconcelos, I.T.G.F.; Karbage, L.B.D.A.S.; Liberato, C.B.R.; Negrato, C.A.; Gomes, M.D.B.; Montenegro, A.P.D.R.; Júnior, R.M.M. Early commitment of cardiovascular autonomic modulation in Brazilian patients with congenital generalized lipodystrophy. BMC Cardiovasc. Disord. 2018, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.G.; Nobrega, L.H.C.; Lima, N.N.; dos Santos, M.C.; Baracho, M.D.F.P.; Bandeira, F.; Capistrano, L.; Neto, F.P.F.; Jeronimo, S. Bone density in patients with Berardinelli-Seip Congenital lipodystrophy is higher in trabecular sites and in type 2 patients. J. Clin. Densitom. 2018, 21, 61–67. [Google Scholar] [CrossRef]
- Scheller, E.; Rosen, C.J. What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann. N. Y. Acad. Sci. 2014, 1311, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Bandeira, F.F.; Miranda, C.R.; Waechter, C.; Bandeira, M.E. High bone mass associated with Berardinelli Lipodystrophy. Endocr. Pr. 2007, 13, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; de Paula, F.; Rosen, C.J. New insights into osteoporosis: The bone-fat connection. J. Intern. Med. 2012, 272, 317–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Meka, C.R.; Medina, K.L.; Igarashi, H.; Comp, P.C.; Takahashi, M.; Nishida, M.; Oritani, K.; Miyagawa, J.-I.; Funahashi, T.; et al. Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J. Clin. Investig. 2002, 109, 1303–1310. [Google Scholar] [CrossRef]
- Lima, J.G.; Lima, N.N.; Nobrega, L.H.C.; Jeronimo, S. Conversations between insulin and bone: Potential mechanism of high bone density in patients with Berardinelli-Seip Congenital Lipodystrophy. Med. Hypotheses 2016, 97, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Lungu, A.O.; Cochran, E.; Collins, M.T.; Gafni, R.I.; Reynolds, J.C.; Rother, K.I.; Gorden, P.; Brown, R.J. Bone mineral content in patients with congenital generalized lipodystrophy is unaffected by metreleptin replacement therapy. J. Clin. Endocrinol. Metab. 2014, 99, E1493–E1500. [Google Scholar] [CrossRef]
- Kotnik, M.; Marshall, T.; Toms, A.P. What happens to bone marrow MRI signal with extreme weight loss. In Proceedings of the The 2019 European Congress of Radiology, Vienna, Austria, 27 February–3 March 2019. [Google Scholar] [CrossRef]
- Li, Z.; Hardij, J.; Bagchi, D.P.; Scheller, E.; MacDougald, O.A. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 2018, 110, 134–140. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Horowitz, M.C.; MacDougald, O.; Scheller, E.; Rodeheffer, M.S.; Rosen, C.J.; Klibanski, A. Marrow fat and bone—New perspectives. J. Clin. Endocrinol. Metab. 2013, 98, 935–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muruganandan, S.; Govindarajan, R.; Sinal, C.J. Bone marrow adipose tissue and skeletal health. Curr. Osteoporos. Rep. 2018, 16, 434–442. [Google Scholar] [CrossRef]
- Meunier, P.; Aaron, J.; Edouard, C.; VlGNON, G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin. Orthop. Relat. Res. 1971, 80, 147–154. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilling, T.; Nöth, U.; Klein-Hitpass, L.; Jakob, F.; Schütze, N. Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol. Cell. Endocrinol. 2007, 271, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuttall, M.E.; Gimble, J.M. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr. Opin. Pharmacol. 2004, 4, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Gijsen, H.S.-V.; Crowther, N.; Hough, F.S.; Ferris, W.F. The interrelationship between bone and fat: From cellular see-saw to endocrine reciprocity. Cell. Mol. Life Sci. 2012, 70, 2331–2349. [Google Scholar] [CrossRef]
- Fleckenstein, J.L.; Garg, A.; Bonte, F.J.; Vuitch, M.F.; Peshock, R.M. The skeleton in congenital, generalized lipodystrophy: Evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet. Radiol. 1992, 21, 381–386. [Google Scholar] [CrossRef]
- Teboul-Coré, S.; Rey-Jouvin, C.; Miquel, A.; Vatier, C.; Capeau, J.; Robert, J.-J.; Pham, T.; Lascols, O.; Berenbaum, F.; Laredo, J.-D.; et al. Bone imaging findings in genetic and acquired lipodystrophic syndromes: An imaging study of 24 cases. Skelet. Radiol. 2016, 45, 1495–1506. [Google Scholar] [CrossRef]
- Simha, V.; Agarwal, A.K.; Aronin, P.A.; Iannaccone, S.T.; Garg, A. novel subtype of congenital generalized lipodystrophy associated with muscular weakness and cervical spine instability. Am. J. Med. Genet. A 2008, 146, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Cock, T.; Back, J.; Elefteriou, F.; Karsenty, G.; Kastner, P.; Chan, S.; Auwerx, J. Enhanced bone formation in lipodystrophic PPARγ hyp/hyp mice relocates haematopoiesis to the spleen. EMBO Rep. 2004, 5, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, M.; Pennington, C.; Newton, D.; Xie, D.; Isales, C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004, 34, 376–383. [Google Scholar] [CrossRef]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef] [PubMed]
- Ducy, P.; Amling, M.; Takeda, S.; Priemel, M.; Schilling, A.F.; Beil, F.T.; Shen, J.; Vinson, C.; Rueger, J.M.; Karsenty, G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 2000, 100, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Steppan, C.M.; Crawford, D.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef]
- Upadhyay, J.; Farr, O.; Mantzoros, C.S. The role of leptin in regulating bone metabolism. Metabolism 2015, 64, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinoi, E.; Gao, N.; Jung, D.Y.; Yadav, V.K.; Yoshizawa, T.; Myers, M.G.; Chua, S.C.; Kim, J.; Kaestner, K.H.; Karsenty, G. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 2008, 183, 1235–1242. [Google Scholar] [CrossRef]
- Chan, J.L.; Mietus, J.E.; Raciti, P.; Goldberger, A.L.; Mantzoros, C.S. Short-term fasting-induced autonomic activation and changes in catecholamine levels are not mediated by changes in leptin levels in healthy humans. Clin. Endocrinol. 2007, 66, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Kalra, S.P.; Wong, C.P.; Philbrick, K.A.; Lindenmaier, L.B.; Boghossian, S.; Iwaniec, U.T. Peripheral leptin regulates bone formation. J. Bone Miner. Res. 2013, 28, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Gori, F.; Khosla, S.; Jensen, M.D.; Burguera, B.; Riggs, B.L. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef]
- Ozata, M. Different presentation of bone mass in mice and humans with congenital leptin deficiency. J. Clin. Endocrinol. Metab. 2002, 87, 951. [Google Scholar] [CrossRef]
- Simha, V.; Zerwekh, J.E.; Sakhaee, K.; Garg, A. Effect of subcutaneous leptin replacement therapy on bone metabolism in patients with generalized lipodystrophy. J. Clin. Endocrinol. Metab. 2002, 87, 4942–4945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqi, I.S.; Jebb, S.A.; Langmack, G.; Lawrence, E.; Cheetham, C.H.; Prentice, A.M.; Hughes, I.A.; McCamish, M.A.; O’Rahilly, S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 1999, 341, 879–884. [Google Scholar] [CrossRef]
- Moran, S.A.; Patten, N.; Young, J.R.; Cochran, E.; Sebring, N.; Reynolds, J.; Premkumar, A.; DePaoli, A.M.; Skarulis, M.C.; Oral, E.A.; et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism 2004, 53, 513–519. [Google Scholar] [CrossRef]
- Sienkiewicz, E.; Magkos, F.; Aronis, K.; Brinkoetter, M.; Chamberland, J.; Chou, S.; Arampatzi, K.M.; Gao, C.; Koniaris, A.; Mantzoros, C.S. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism 2011, 60, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Hamnvik, O.-P.; Brinkoetter, M.; Mantzoros, C.S. Leptin as a modulator of neuroendocrine function in humans. Yonsei Med. J. 2012, 53, 671–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, F.; Long, F. Building strong bones: Molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 2012, 13, 27–38. [Google Scholar] [CrossRef]
- Zou, W.; Rohatgi, N.; Brestoff, J.R.; Zhang, Y.; Scheller, E.; Craft, C.S.; Brodt, M.D.; Migotsky, N.; Silva, M.J.; Harris, C.A.; et al. Congenital lipodystrophy induces severe osteosclerosis. PLoS Genet. 2019, 15, e1008244. [Google Scholar] [CrossRef] [Green Version]
- Berner, H.S.; Lyngstadaas, S.P.; Spahr, A.; Monjo, M.; Thommesen, L.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004, 35, 842–849. [Google Scholar] [CrossRef]
- Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: And hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001, 86, 1930–1935. [Google Scholar]
- Huang, L.; Shi, H.; Zhou, X. mechanistic insights into osteoporosis in patients with lipodystrophy and review of the literature. Endocr. Pract. 2017, 23, 857–862. [Google Scholar] [CrossRef]
- Shinoda, Y.; Yamaguchi, M.; Ogata, N.; Akune, T.; Kubota, N.; Yamauchi, T.; Terauchi, Y.; Kadowaki, T.; Takeuchi, Y.; Fukumoto, S.; et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 2006, 99, 196–208. [Google Scholar] [CrossRef]
- Kanazawa, I. Adiponectin in metabolic bone disease. Curr. Med. Chem. 2012, 19, 5481–5492. [Google Scholar] [CrossRef]
- Luo, X.-H.; Guo, L.-J.; Xie, H.; Yuan, L.-Q.; Wu, X.-P.; Zhou, H.-D.; Liao, E.-Y. Adiponectin stimulates rankl and inhibits opg expression in human osteoblasts through the mapk signaling pathway. J. Bone Miner. Res. 2006, 21, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Pedone, C.; Pozzilli, P.; Lauretani, F.; Ferrucci, L.; Incalzi, R.A. Adiponectin and bone mass density: The InCHIANTI study. Bone 2010, 47, 1001–1005. [Google Scholar] [CrossRef] [Green Version]
- Kajimura, D.; Lee, H.W.; Riley, K.J.; Arteaga-Solis, E.; Ferron, M.; Zhou, B.; Clarke, C.J.; Hannun, Y.A.; DePinho, R.A.; Guo, E.X.; et al. Adiponectin regulates bone mass accrual through two opposite mechanisms, one local and one central, that both rely on FoxO1. Cell Metab. 2013, 17, 901–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulzele, K.; Riddle, R.C.; DiGirolamo, D.J.; Cao, X.; Wan, C.; Chen, D.; Faugere, M.-C.; Aja, S.; Hussain, M.A.; Brüning, J.C.; et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010, 142, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenchik, L.; Register, T.; Hsu, F.-C.; Lohman, K.; Nicklas, B.; Freedman, B.; Langefeld, C.; Carr, J.; Bowden, D. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 2003, 33, 646–651. [Google Scholar] [CrossRef]
- Richards, J.B.; Valdes, A.; Burling, K.; Perks, U.C.; Spector, T.D. Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 2007, 92, 1517–1523. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Loo, Y.T.; Henry, C.J. Relationships between adiponectin and bone: Sex difference. Nutrition 2020, 70, 110489. [Google Scholar] [CrossRef]
- Sellmeyer, D.E.; Civitelli, R.; Hofbauer, L.C.; Khosla, S.; Lecka-Czernik, B.; Schwartz, A.V. Skeletal metabolism, fracture risk, and fracture outcomes in type 1 and type 2 diabetes. Diabetes 2016, 65, 1757–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrailkill, K.M.; Lumpkin, C.K.; Bunn, R.C.; Kemp, S.F.; Fowlkes, J.L. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E735–E745. [Google Scholar] [CrossRef] [Green Version]
- Conte, C.; Epstein, S.; Napoli, N. Insulin resistance and bone: A biological partnership. Acta Diabetol. 2018, 55, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kaw, M.; Harris, M.; Ebraheim, N.; McInerney, M.; Najjar, S.; Lecka-Czernik, B. Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM. Bone 2010, 46, 1138–1145. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay Between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecka-Czernik, B.; Stechschulte, L.; Czernik, P.; Dowling, A. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell. Endocrinol. 2015, 410, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Tonks, K.T.; White, C.; Center, J.R.; Samocha-Bonet, D.; Greenfield, J. Bone turnover is suppressed in insulin resistance, independent of adiposity. J. Clin. Endocrinol. Metab. 2017, 102, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthorn, W.P.; Scheller, E.; Learman, B.S.; Parlee, S.D.; Simon, B.R.; Mori, H.; Ning, X.; Bree, A.J.; Schell, B.; Broome, D.T.; et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014, 20, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wu, Y.; Kang, N. Review article marrow adipose tissue: Its origin, function, and regulation in bone remodeling and regeneration. Stem Cells Int. 2018, 2018, 7098456. [Google Scholar] [CrossRef] [Green Version]
- Laharrague, P.; Larrouy, D.; Fontanilles, A.; Truel, N.; Campfield, A.; Tenenbaum, R.; Galitzky, J.; Corberand, J.X.; Pénicaud, L.; Casteilla, L. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 1998, 12, 747–752. [Google Scholar] [CrossRef]
- Almeida, M.; Ambrogini, E.; Han, L.; Manolagas, S.C.; Jilka, R.L. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-γ expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J. Biol. Chem. 2009, 284, 27438–27448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.G.; Nobrega, L.H.C.; Lima, N.N.; Dos Santos, M.C.F.; Baracho, M.D.F.P.; Winzenrieth, R.; Bandeira, F.; Mendes-Aguiar, C.D.O.; Neto, F.P.F.; Ferreira, L.C.; et al. Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy. Bone 2017, 101, 21–25. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, E.B.L.; d’Alva, C.B.; Madeira, M.P.; Lima, G.E.d.C.P.; Montenegro, A.P.D.R.; Fernandes, V.O.; Montenegro Junior, R.M.; Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. Int. J. Environ. Res. Public Health 2021, 18, 9724. https://doi.org/10.3390/ijerph18189724
Freire EBL, d’Alva CB, Madeira MP, Lima GEdCP, Montenegro APDR, Fernandes VO, Montenegro Junior RM, Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. International Journal of Environmental Research and Public Health. 2021; 18(18):9724. https://doi.org/10.3390/ijerph18189724
Chicago/Turabian StyleFreire, Erika Bastos Lima, Catarina Brasil d’Alva, Mayara Ponte Madeira, Grayce Ellen da Cruz Paiva Lima, Ana Paula Dias Rangel Montenegro, Virginia Oliveira Fernandes, Renan Magalhães Montenegro Junior, and Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). 2021. "Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance" International Journal of Environmental Research and Public Health 18, no. 18: 9724. https://doi.org/10.3390/ijerph18189724
APA StyleFreire, E. B. L., d’Alva, C. B., Madeira, M. P., Lima, G. E. d. C. P., Montenegro, A. P. D. R., Fernandes, V. O., Montenegro Junior, R. M., & Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). (2021). Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. International Journal of Environmental Research and Public Health, 18(18), 9724. https://doi.org/10.3390/ijerph18189724