The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Training Programs
- 1 August 2017–22 August 2017, National Sports Complex “Piatra Arsă” of the Bucegi Mountains (altitude; HIGH G1)
- 1 August 2018–22 August 2018, on the Black Sea coast, in Mamaia-Constanța (sea-level/SAND; G2)
- 1 August 2019–22 August 2019, in Blaj, the Alba County (traditional sea-level, 600 m CTRL)
2.3. Anthropometrics
2.4. Haemoglobin Concentration
2.5. Erythropoietin Concentration
2.6. Maximal Aerobic Velocity and Capacity
2.7. Statistical Analyses
3. Results
3.1. Sample Size
3.2. Anthropometrics
3.3. Maximal Aerobic Velocity and VO2max
3.4. Erythropoietin Concentrations
3.5. Haemoglobin Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilber, R.L. Application of Altitude/Hypoxic Training by Elite Athletes. Med. Sci. Sports Exerc. 2007, 39, 1610–1624. [Google Scholar] [CrossRef][Green Version]
- Green, H.J. Altitude Acclimatization, Training and Performance. J. Sci. Med. Sport 2000, 3, 299–312. [Google Scholar] [CrossRef]
- Bonetti, D.L.; Hopkins, W.G. Sea-Level Exercise Performance Following Adaptation to Hypoxia: A Meta-Analysis. Sports Med. 2009, 39, 107–127. [Google Scholar] [CrossRef]
- Westerterp, K.R. Energy and Water Balance at High Altitude. Physiology 2001, 16, 134–137. [Google Scholar] [CrossRef]
- Berryman, C.E.; Young, A.J.; Karl, J.P.; Kenefick, R.W.; Margolis, L.M.; Cole, R.E.; Carbone, J.W.; Lieberman, H.R.; Kim, I.; Ferrando, A.A.; et al. Severe Negative Energy Balance during 21 d at High Altitude Decreases Fat-free Mass Regardless of Dietary Protein Intake: A Randomized Controlled Trial. FASEB J. 2018, 32, 894–905. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bailey, D.M.; Davies, B. Physiological Implications of Altitude Training for Endurance Performance at Sea Level: A Review. Br. J. Sports Med. 1997, 31, 183–190. [Google Scholar] [CrossRef][Green Version]
- Binnie, M.J.; Dawson, B.; Arnot, M.A.; Pinnington, H.; Landers, G.; Peeling, P. Effect of Sand versus Grass Training Surfaces during an 8-Week Pre-Season Conditioning Programme in Team Sport Athletes. J. Sports Sci. 2014, 32, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Gortsila, E.; Theos, A.; Nesic, G.; Maridaki, M. The Impact of Training Surface in Agility of Prepubescent Volleyball Players. Pediatr. Res. 2011, 70, 319. [Google Scholar] [CrossRef][Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of Plyometric Training on Sand versus Grass on Muscle Soreness and Jumping and Sprinting Ability in Soccer Players. Br. J. Sports Med. 2007, 42, 42–46. [Google Scholar] [CrossRef]
- Binnie, M.J.; Dawson, B.; Pinnington, H.; Landers, G.; Peeling, P. Sand Training: A Review of Current Research and Practical Applications. J. Sports Sci. 2014, 32, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Pinnington, H.C.; Dawson, B. The Energy Cost of Running on Grass Compared to Soft Dry Beach Sand. J. Sci. Med. Sport 2001, 4, 416–430. [Google Scholar] [CrossRef]
- Pereira, L.A.; Freitas, T.T.; Marín-Cascales, E.; Bishop, C.; McGuigan, M.R.; Loturco, I. Effects of Training on Sand or Hard Surfaces on Sprint and Jump Performance of Team-Sport Players: A Systematic Review With Meta-Analysis. Strength Cond. J. 2021, 43, 56–66. [Google Scholar] [CrossRef]
- Yiǧit, S.; Tuncel, F. A Comparison of the Endurance Training Responses to Road and Sand Running in High School and College Students. J. Strength Cond. Res. 1998, 12, 79–81. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, J.; Martinez-Rodriguez, A.; Felipe, J.L.; Hernandez-Martin, A.; Ubago-Guisado, E.; Bangsbo, J.; Gallardo, L.; Garcia-Unanue, J. Effect of Natural Turf, Artificial Turf, and Sand Surfaces on Sprint Performance. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2020, 17, 9478. [Google Scholar] [CrossRef]
- Pinnington, H.; Dawson, B. Running Economy of Elite Surf Iron Men and Male Runners, on Soft Dry Beach Sand and Grass. Eur. J. Appl. Physiol. 2001, 86, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, T.M.; Willems, P.A.; Heglund, N.C. Mechanics and Energetics of Human Locomotion on Sand. J. Exp. Biol. 1998, 201, 2071–2080. [Google Scholar] [CrossRef]
- Léger, L.; Mercier, D. Gross Energy Cost of Horizontal Treadmill and Track Running. Sports Med. 1984, 1. [Google Scholar] [CrossRef] [PubMed]
- Melin, B.; Jimenez, C.; Charpenet, A.; Pouzeratte, N.; Bittel, J. Validation de deux tests de détermination de la vitesse maximale aérobie (VMA) sur le terrain. Sci. Sports 1996, 11, 46–52. [Google Scholar] [CrossRef]
- Chamoux, A.; Berthon, P.; Laubignat, J.F. Determination of Maximum Aerobic Velocity by a Five Minute Test with Reference to Running World Records. A Theoretical Approach. Arch. Physiol. Biochem. 1996, 104, 207–211. [Google Scholar] [CrossRef]
- Berthon, P.; Fellmann, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamoux, A. A 5-Min Running Field Test as a Measurement of Maximal Aerobic Velocity. Eur. J. Appl. Physiol. 1997, 75, 233–238. [Google Scholar] [CrossRef]
- Nadarajan, V.S.; Ooi, C.H.; Sthaneshwar, P.; Thompson, M.W. The Utility of Immature Reticulocyte Fraction as an Indicator of Erythropoietic Response to Altitude Training in Elite Cyclists. Int. J. Lab. Hematol. 2010, 32, 82–87. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Hou, C.-W.; Bernard, J.R.; Chen, C.-C.; Hung, T.-C.; Cheng, L.-L.; Liao, Y.-H.; Kuo, C.-H. Rhodiola Crenulata- and Cordyceps Sinensis-Based Supplement Boosts Aerobic Exercise Performance after Short-Term High Altitude Training. High Alt. Med. Biol. 2014, 15, 371–379. [Google Scholar] [CrossRef][Green Version]
- Garvican, L.; Martin, D.; Quod, M.; Stephens, B.; Sassi, A.; Gore, C. Time Course of the Hemoglobin Mass Response to Natural Altitude Training in Elite Endurance Cyclists: Altitude Training and Hemoglobin Mass. Scand. J. Med. Sci. Sports 2012, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Heinicke, K.; Heinicke, I.; Schmidt, W.; Wolfarth, B. A Three-Week Traditional Altitude Training Increases Hemoglobin Mass and Red Cell Volume in Elite Biathlon Athletes. Int. J. Sports Med. 2005, 26, 350–355. [Google Scholar] [CrossRef][Green Version]
- Asano, M.; Kaneoka, K.; Nomura, T.; Asano, K.; Sone, H.; Tsurumaru, K.; Yamashita, K.; Matsuo, K.; Suzuki, H.; Okuda, Y. Increase in Serum Vascular Endothelial Growth Factor Levels during Altitude Training. Acta Physiol. Scand. 1998, 162, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, B.; Jost, J.; Rating, T.; Weller, E.; Werle, E.; Eckardt, K.-U.; Bärtsch, P.; Mairbäurl, H. Effects of Iron Supplementation on Total Body Hemoglobin During Endurance Training at Moderate Altitude. Int. J. Sports Med. 1999, 20, 78–85. [Google Scholar] [CrossRef]
- Binnie, M.J.; Dawson, B.; Pinnington, H.; Landers, G.; Peeling, P. Part 2: Effect of Training Surface on Acute Physiological Responses After Sport-Specific Training. J. Strength Cond. Res. 2013, 27, 1057–1066. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Epidemiological, Biological and Clinical Update on Exercise-Induced Hemolysis. Ann. Transl. Med. 2019, 7, 270. [Google Scholar] [CrossRef] [PubMed]
- Alexe, C.I.; Heimer, S.; Larion, A.; Alexe, D.I. The Effects of Competitive Stress upon Biological and Emotional-Affective Reactions at the Level of Athletes Specialized in Semifond-Fond Events. J. Phys. Educ. Sport 2011, 12, 1–18. [Google Scholar]
- Miller, B.; Pate, R.; Burgess, W. Foot Impact Force and Intravascular Hemolysis During Distance Running. Int. J. Sports Med. 1988, 9, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, G.; Mankyu, H.; Tsunokawa, T.; Matsumoto, M.; Funamori, H. Effectiveness of Positive and Negative Ions for Elite Japanese Swimmers’ Physical Training: Subjective and Biological Emotional Evaluations. Appl. Sci. 2020, 10, 4198. [Google Scholar] [CrossRef]
- Pinnington, H.C.; Lloyd, D.G.; Besier, T.F.; Dawson, B. Kinematic and Electromyography Analysis of Submaximal Differences Running on a Firm Surface Compared with Soft, Dry Sand. Eur. J. Appl. Physiol. 2005, 94, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Nummela, A.; Eronen, T.; Koponen, A.; Tikkanen, H.; Peltonen, J.E. Variability in Hemoglobin Mass Response to Altitude Training Camps. Scand. J. Med. Sci. Sports 2021, 31, 44–51. [Google Scholar] [CrossRef]
- Mairburl, H.; Schobersberger, W.; Hasibeder, W.; Schwaberger, G.; Gaesser, G.; Tanaka, K.R. Regulation of Red Cell 2,3-DPG and Hb-O2-Affinity during Acute Exercise. Eur. J. Appl. Physiol. 1986, 55, 174–180. [Google Scholar] [CrossRef]
- McLean, B.D.; Buttifant, D.; Gore, C.J.; White, K.; Kemp, J. Year-to-Year Variability in Haemoglobin Mass Response to Two Altitude Training Camps. Br. J. Sports Med. 2013, 47, i51–i58. [Google Scholar] [CrossRef][Green Version]
- Gore, C.J.; Sharpe, K.; Garvican-Lewis, L.A.; Saunders, P.U.; Humberstone, C.E.; Robertson, E.Y.; Wachsmuth, N.B.; Clark, S.A.; McLean, B.D.; Friedmann-Bette, B.; et al. Altitude Training and Haemoglobin Mass from the Optimised Carbon Monoxide Rebreathing Method Determined by a Meta-Analysis. Br. J. Sports Med. 2013, 47, i31–i39. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Halliday, I.; Abbiss, C.R.; Saunders, P.U.; Gore, C.J. Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. J. Sports Sci. Med. 2015, 14, 413–417. [Google Scholar] [PubMed]
- Clark, S.A.; Quod, M.J.; Clark, M.A.; Martin, D.T.; Saunders, P.U.; Gore, C.J. Time Course of Haemoglobin Mass during 21 Days Live High:Train Low Simulated Altitude. Eur. J. Appl. Physiol. 2009, 106, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Stray-Gundersen, J.; Chapman, R.F.; Levine, B.D. “Living High-Training Low” Altitude Training Improves Sea Level Performance in Male and Female Elite Runners. J. Appl. Physiol. 2001, 91, 1113–1120. [Google Scholar] [CrossRef]
- Wehrlin, J.P.; Zuest, P.; Hallén, J.; Marti, B. Live High-Train Low for 24 Days Increases Hemoglobin Mass and Red Cell Volume in Elite Endurance Athletes. J. Appl. Physiol. 2006, 100, 1938–1945. [Google Scholar] [CrossRef]
- Ocobock, C.J. Body Fat Attenuates Muscle Mass Catabolism among Physically Active Humans in Temperate and Cold High Altitude Environments. Am. J. Hum. Biol. 2017, 29, e23013. [Google Scholar] [CrossRef]
- Gunga, H.-C.; Fries, D.; Humpeler, E.; Kirsch, K.; Boldt, L.-E.; Koralewski, E.; Johannes, B.; Klingler, A.; Mittermayr, M.; Röcker, L.; et al. Austrian Moderate Altitude Study (AMAS 2000)—Fluid Shifts, Erythropoiesis, and Angiogenesis in Patients with Metabolic Syndrome at Moderate Altitude (≅1700 m). Eur. J. Appl. Physiol. 2003, 88, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Greie, S.; Humpeler, E.; Gunga, H.C.; Koralewski, E.; Klingler, A.; Mittermayr, M.; Fries, D.; Lechleitner, M.; Hoertnagl, H.; Hoffmann, G.; et al. Improvement of Metabolic Syndrome Markers through Altitude Specific Hiking Vacations. J. Endocrinol. Invest. 2006, 29, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, Z.; Śliwicka, E.; Hennig, K.; Pilaczyńska-Szcześniak, Ł.; Huta-Osiecka, A.; Nowak, A. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb. High Alt. Med. Biol. 2015, 16, 230–235. [Google Scholar] [CrossRef]
- Hammami, M.; Bragazzi, N.L.; Hermassi, S.; Gaamouri, N.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. The Effect of a Sand Surface on Physical Performance Responses of Junior Male Handball Players to Plyometric Training. BMC Sports Sci. Med. Rehabil. 2020, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Haisan, A.-A.; Bresfelean, P.V. Quality of the Educational System, Premise for Scientific Excellence and Economic Aggrandizement. Natl. Strateg. Obs. 2015, 1, 17. [Google Scholar]
Blood Sampling | Anthropometric Measurements | Physical Tests to Determine VO2max/VMA | |||
---|---|---|---|---|---|
Before 21-day training program | After 21-day training program | Before 21-day training program | After 21-day training program | Before 21-day training program | After 21-day training program |
31 July 2017 8:00 o’clock | 22August2017 8:00 o’clock | 31 July 2017 8:30 o’clock | 22 August 2017 8:30 o’clock | 31 July 2017 16:00 o’clock | 22 August 2017 16:00 o’clock |
31 July 2018 8:00 o’clock | 22 August 2018 8:00 o’clock | 31 July 2018 8:30 o’clock | 22 August 2018 8:30 o’clock | 31 July 2018 16:00 o’clock | 22 August 2018 16:00 o’clock |
31 July 2019 8:00 o’clock | 22 August 2019 8:00 o’clock | 31 July 2019 8:30 o’clock | 22 August 2019 8:30 o’clock | 31 July 2019 16:00 o’clock | 22 August 2019 16:00 o’clock |
Day | Piatra Arsă-2000 m Altitude | Total Km- Running |
---|---|---|
1 | T.S.1 8 km e.r. 50%VMA/T.S.2 8 km e.r. segment strength-65%VMA | 16 |
2 | T.S.3 10 km e.r. 50%VMA/T.S.4 6 km e.r. and 3 complete strength series-65% VMA | 16 |
3 | T.S.5 12 km r. uniform tempo, 65%VMA, segm. strength/T.S.6 10 km r. uniform tempo, 10 × 100 m a.l.-65% VMA | 22 |
4 | S.T.7 16 km r. various land, segment strength and r.l.-70%VMA | 16 |
5 | S.T.8 20 km r. various land-75% VMA/S.T.9- 8 km e.r. 3 series of ex. for strength | 28 |
6 | S.T.10 16 km r. uniform tempo. 70%VMA/S.T.11 10 km r. uniform tempo., 10 × 100 m r.l.-70% VMA | 27 |
7 | S.T.12 14 km r. uniform tempo., 75%VMA | 14 |
8 | S.T.13 16 km r. progressive various land 75–83% VMA/S.T.14 10 km r. uniform tempo., -70% VMA and 3 series of ex. for strength | 26 |
9 | S.T.15 6 km r. uniform tempo.,65%VMA, 20 × 100 m r. accelerated (100%VMA) with connection 100 m e.r. 4 km/S.T.16 10 km r. uniform tempo., stretching | 24 |
10 | S.T.17 10 km e.r., stretching 75%VMA/S.T.18 40 min r. (2 min r. tempo sustained + 1 min conn.+1 min r tempo sustained +1 min. connection) x 8 series (90%VMA) | 26 |
11 | S.T.19 15 km r. various land (75–80%VMA) | 15 |
12 | S.T.20 10 km r. various land and 10 × 100 m r.l. with 100 m e.r. 80%VMA/S.T.21 10 km r. uniform tempo., (75%VMA) | 24 |
13 | S.T.22 12 km r. tempo. progressive-88–93% VMA/S.T.23 10 km e.r. (75%VMA) | 26 |
14 | S.T.24 16 km r. various land 80% VMA/S.T.25 10 km r. uniform tempo., (75%VMA) | 26 |
15 | S.T.26 14 km r. various tempo 92–94%VMA, 1 km e.r. | 27 |
16 | S.T.27 10 km e.r. 75%VMA/S.T.28 14 km e.r. segment strength (60%VMA) | 24 |
17 | S.T.29 26 km r. various land (65%VMA) | 26 |
18 | S.T.30 6 km e.r. 15 × 100 m with 100 m (95%VMA), 3 km e.r./S.T.31 10 km r. uniform tempo, 70%VMA | 22 |
19 | S.T.32 8 km e.r.75%VMA/S.T.33 3 km e.r. 20 × 300 m with connection 100 m e.r. (30 sec) 100% | 20 |
20 | S.T.34 2 hours’ walk- forest (2000 m/600 m altitude)/beach (0 m altitude) | 0 |
21 | S.T.35 15 km r. 80%VMA/S.T.36 10 km r. uniform tempo., 75%VMA | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, M.C.; Ganera, C.; Bărbuleț, G.D.; Krzysztofik, M.; Panaet, A.E.; Cucui, A.I.; Tohănean, D.I.; Alexe, D.I. The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. Int. J. Environ. Res. Public Health 2021, 18, 9486. https://doi.org/10.3390/ijerph18189486
Man MC, Ganera C, Bărbuleț GD, Krzysztofik M, Panaet AE, Cucui AI, Tohănean DI, Alexe DI. The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. International Journal of Environmental Research and Public Health. 2021; 18(18):9486. https://doi.org/10.3390/ijerph18189486
Chicago/Turabian StyleMan, Maria Cristina, Cătălin Ganera, Gabriel Dan Bărbuleț, Michał Krzysztofik, Adelina Elena Panaet, Alina Ionela Cucui, Dragoș Ioan Tohănean, and Dan Iulian Alexe. 2021. "The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside" International Journal of Environmental Research and Public Health 18, no. 18: 9486. https://doi.org/10.3390/ijerph18189486