Decomposing Differences of Health Service Utilization among Chinese Rural Migrant Workers with New Cooperative Medical Scheme: A Comparative Study
Abstract
:1. Background
2. Methods
2.1. Data
2.2. Study Population and Measurements
2.3. Predictor
2.4. Coarsened Exact Matching
2.5. Multilevel Regression Model
2.6. Fairlie Decomposition
3. Result
3.1. Matching Performance
3.2. Logit Regression Analysis
3.3. Fairlie’s Decomposition of Differences in Health Service Utilization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLDS | China Labor-Force Dynamic Survey |
CEM | coarsened exact matching method |
Hukou | Chinese household registration system |
NCMS | New cooperative medical scheme |
95% CI | 95% Coefficient Interval |
References
- Wagstaff, A.; Lindelow, M.; Jun, G.; Ling, X.; Juncheng, Q. Extending health insurance to the rural population: An impact evaluation of China’s new cooperative medical scheme. J. Health Econ. 2009, 28, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; De Brauw, A.; Du, Y. Understanding Variation in the Design of China’s New Co-operative Medical System. China Q. 2009, 198, 304. [Google Scholar] [CrossRef]
- Qingyue, M.; Meng, Q.; Collins, C.; Tolhurst, R.; Tang, S.; Yan, F.; Bogg, L.; Liu, X. How does the New Cooperative Medical Scheme influence health service utilization? A study in two provinces in rural China. BMC Health Serv. Res. 2010, 10, 116. [Google Scholar] [CrossRef]
- Roemer, J.E. Equality of Opportunity; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-1-349-95121-5. [Google Scholar]
- Roemer, J.E. Equality of opportunity: A progress report. Soc. Choice Welf. 2002, 19, 455–471. [Google Scholar] [CrossRef]
- Fleurbaey, M.; Schokkaert, E. Equity in Health and Health Care. In Handbook of Health Economics; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1003–1092. [Google Scholar] [CrossRef]
- Cook, B.L.; McGuire, T.G.; Lock, K.; Zaslavsky, A.M. Comparing Methods of Racial and Ethnic Disparities Measurement across Different Settings of Mental Health Care. Health Serv. Res. 2010, 45, 825–847. [Google Scholar] [CrossRef]
- Chao, M.A.; Hai, G.U.; Song, Z.E. Inequality of Opportunity of Urban-Rural Health Care Utilization under Compensation Principle. China Econ. Q. 2017, 16, 1262–1288. [Google Scholar]
- Li, D.; Zhou, Z.; Shen, C.; Zhang, J.; Yang, W.; Nawaz, R. Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China. Int. J. Environ. Res. Public Health 2020, 17, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Bian, Y. Social Capital and the Reproduction of Inequality: The Case of Income Differential between Rural Migrants and Urban Workers. Socity 2014, 34, 67–90. [Google Scholar] [CrossRef]
- Andersen, R.M. Revisiting the Behavioral Model and Access to Medical Care: Does it Matter? J. Health Soc. Behav. 1995, 36. [Google Scholar] [CrossRef]
- Aday, L.A. Health Status of Vulnerable Populations. Annu. Rev. Public Health 1994, 15, 487–509. [Google Scholar] [CrossRef]
- Hajek, A.; Bock, J.-O.; König, H.-H. Which factors affect health care use among older Germans? Results of the German ageing survey. BMC Health Serv. Res. 2017, 17, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlberg, M.; Eklöf, M.; Fredriksson, P.; Jofre-Monseny, J. Estimating preferences for local public services using migration data. Urban Stud. 2011, 49, 319–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference. Political Anal. 2007, 15, 199–236. [Google Scholar] [CrossRef] [Green Version]
- Iacus, S.M.; King, G.; Katz, G.P.A.J. Causal Inference without Balance Checking: Coarsened Exact Matching. Political Anal. 2012, 20, 1–24. [Google Scholar] [CrossRef]
- Sidney, J.A.; Coberley, C.; Pope, J.E.; Wells, A. Extending coarsened exact matching to multiple cohorts: An application to longitudinal well-being program evaluation within an employer population. Health Serv. Outcomes Res. Methodol. 2015, 15, 136–156. [Google Scholar] [CrossRef]
- Iacus, S.M.; King, G.; Porro, G. Multivariate Matching Methods That Are Monotonic Imbalance Bounding. J. Am. Stat. Assoc. 2011, 106, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Gotsadze, G.; Murphy, A.; Shengelia, N.; Zoidze, A. Healthcare utilization and expenditures for chronic and acute conditions in Georgia: Does benefit package design matter? BMC Health Serv. Res. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Hametner, C.; Kellert, L.; Ringleb, P.A. Impact of sex in stroke thrombolysis: A coarsened exact matching study. BMC Neurol. 2015, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Subramanian, S.; Vickers, D.; Dorling, D. Internal migration, area effects and health: Does where you move to impact upon your health? Soc. Sci. Med. 2015, 136-137, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, M.; Iacus, S.; King, G.; Porro, G. Cem: Coarsened Exact Matching in Stata. Stata J. Promot. Commun. Stat. Stata 2009, 9, 524–546. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Fairlie, R.W.; Robb, A.M. Gender differences in business performance: Evidence from the Characteristics of Business Owners survey. Small Bus. Econ. 2009, 33, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Pagán, J.A.; Su, D.; Li, L.; Armstrong, K.; Asch, D.A. Racial and Ethnic Disparities in Awareness of Genetic Testing for Cancer Risk. Am. J. Prev. Med. 2009, 37, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Fairlie, R.W. The Absence of the African-American Owned Business: An Analysis of the Dynamics of Self-Employment. J. Labor Econ. 1999, 17, 80–108. [Google Scholar] [CrossRef] [Green Version]
- Fairlie, W.; Moore, A.G.; Bauskin, A.R.; Russell, P.; Zhang, H.-P.; Breit, S.N. MIC-1 is a novel TGF-β superfamily cytokine associated with macrophage activation. J. Leukoc. Biol. 1999, 65, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Ñopo, H. An extension of the Blinder–Oaxaca decomposition to a continuum of comparison groups. Econ. Lett. 2008, 100, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Jonsdottir, I.H.; Rödjer, L.; Hadzibajramovic, E.; Börjesson, M.; Ahlborg, G. A prospective study of leisure-time physical activity and mental health in Swedish health care workers and social insurance officers. Prev. Med. 2010, 51, 373–377. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, J.S.; Zhao, Y.M.; Li, M.X.; Lv, S.C. Evaluation Method of Allocation Level of Urban Fundamental Public Service Facilities. Geospat. Inf. 2020, 12, 35–40+6. [Google Scholar]
- Birkimer, J.C.; Johnston, P.L.; Berry, M.M. Guilt and Help from Friends: Variables Related to Healthy Behavior. J. Soc. Psychol. 1993, 133, 683–692. [Google Scholar] [CrossRef]
- Smith, H.J.; Leach, C.W. Group membership and everyday social comparison experiences. Eur. J. Soc. Psychol. 2004, 34, 297–308. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Gao, J. Health Disparities between the Rural and Urban Elderly in China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 8056. [Google Scholar] [CrossRef]
Variables | Before Matching | After Matching | ||
---|---|---|---|---|
L1 | Mean | L1 | Mean | |
Age | 0.099 | 0.185 | 9.30 × 10−16 | 6.00 × 10−15 |
Gender | 0.051 | −0.050 | 6.70 × 10−16 | 2.40 × 10−15 |
Quintiles | 0.16 | −0.452 | 1.10 × 10−15 | 5.80 × 10−15 |
SAH | 0.015 | 0.028 | 4.90 × 10−16 | 1.60 × 10−15 |
Multivariate L1 | 0.252 | 9.07 × 10−16 |
Variables | Before Matching N (%) | After Matching N (%) | ||||
---|---|---|---|---|---|---|
In the County/District | Across the County/District | p | In the County/District | Across the County/District | p# | |
Age group | <0.001 | 0.781 | ||||
15~36 † | 1018 (37.41) | 285 (47.42) | 892 (39.12) | 165 (38.55) | ||
36~50 | 972 (35.72) | 227 (37.77) | 867 (38.03) | 162 (38.05) | ||
50~64 | 731 (26.87) | 89 (14.81) | 521 (22.85) | 100 (23.40) | ||
Gender | <0.01 | 0.973 | ||||
Men † | 1593 (58.54) | 317 (52.75) | 1340 (58.77) | 251 (58.86) | ||
Women | 1128 (41.460) | 284 (47.25) | 940 (41.23) | 176 (41.14) | ||
Quintiles | <0.001 | 0.842 | ||||
Poorest † | 506 (20.64) | 69 (16.24) | 470 (20.61) | 93 (21.88) | ||
Poorer | 526 (21.46) | 49 (11.53) | 486 (21.32) | 76 (17.77) | ||
Middle | 504 (20.56) | 72 (16.94) | 466 (20.44) | 93 (21.82) | ||
Richer | 462 (18.85) | 113 (26.59) | 432 (18.95) | 87 (20.29) | ||
Richest | 453 (18.48) | 122 (28.71) | 426 (18.68) | 78 (18.24) | ||
SAH | 0.091 | 0.860 | ||||
Good † | 1864 (68.50) | 421 (70.05) | 1603 (70.31) | 296 (69.32) | ||
Fair | 685 (25.17) | 152 (25.29) | 577 (25.31) | 111 (26.00) | ||
Poor | 172 (6.32) | 28 (4.66) | 100 (4.39) | 20 (4.68) | ||
N | 2721 | 601 | 2280 | 427 |
Variable | Outpatient/In | Inpatient/In | Outpatient/Across | Inpatient/Across | |||||
---|---|---|---|---|---|---|---|---|---|
OR | SE | OR | SE | OR | SE | OR | SE | ||
Fixed effects | Intercept | −3.042 *** | 0.149 | −2.773 *** | 0.083 | −2.982 *** | 0.268 | 3.205 *** | 0.390 |
Random effects | City level variance | 0.396 | 0.231 | 2.81 × 10−35 | 2.93 × 10−35 | 5.01 × 10−33 | 5.29 × 10−32 | 0.294 | 0.438 |
Community level variance | 0.109 | 0.199 | 3.41 × 10−34 | 7.94 × 10−15 | 0.012 | 0.547 | 1.21 × 10−33 | 1.63 × 10−33 | |
Personal level parameter | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 |
Variables | Outpatient/In | Inpatient/In | Outpatient/Across | Inpatient/Across | ||||
---|---|---|---|---|---|---|---|---|
OR | SE | OR | SE | OR | SE | OR | SE | |
Individual characteristics | ||||||||
Age group | ||||||||
15~36 † | ||||||||
36~50 | 0.871 | 0.218 | 0.800 | 0.202 | 0.528 | 0.394 | 0.194 | 0.240 |
50~64 | 0.716 | 0.226 | 1.278 | 0.348 | 0.876 | 0.763 | 0.508 | 0.283 |
Gender | ||||||||
Men † | ||||||||
Women | 0.848 | 0.227 | 1.426 | 0.393 | 4.161 | 4.009 | 19.984 ** | 6.597 |
Living arrangement | ||||||||
Live with spouse † | ||||||||
Live without spouse | 0.537 * | 0.145 | 1.401 | 0.440 | 1.773 | 1.636 | 1.142 | 0.998 |
Educational attainment | ||||||||
Below primary school † | ||||||||
Primary school | 1.036 | 0.262 | 1.388 | 0.332 | 3.809 | 3.186 | 0.308 | 0.264 |
Middle school and above | 1.028 | 0.315 | 1.162 | 0.360 | 1.495 | 1.779 | 0.251 | 0.243 |
Technical certificate | ||||||||
Yes † | ||||||||
No | 0.960 | 0.324 | 0.617 | 0.172 | 1.798 | 2.080 | 0.127 * | 0.107 |
Type of industry | ||||||||
Professional technician/Clerical staff † | ||||||||
Service stuff | 0.766 | 0.358 | 1.339 | 0.636 | 0.079 * | 0.101 | 15.338 ** | 13.819 |
Manufacturing and construction | 0.708 | 0.334 | 1.843 | 0.892 | 0.028 * | 0.041 | 1.411 | 2.257 |
Freelancer | 0.721 | 0.408 | 1.644 | 0.870 | 0.005 *** | 0.008 | 22.061 | 36.979 |
Type of unit | ||||||||
Party/government/state-owned † | ||||||||
Collective enterprises and institutions | 1.010 | 0.384 | 1.105 | 0.422 | 1.105 | 0.422 | 10.812 ** | 7.561 |
Self-employed and freelance | 1.067 | 0.464 | 1.017 | 0.401 | 1.017 | 0.401 | 1.379 | 0.401 |
Working hours | ||||||||
Moderate labor † | ||||||||
Excessive labor | 1.135 | 0.245 | 0.926 | 0.180 | 1.996 | 1.295 | 2.128 | 1.253 |
Income quintiles | ||||||||
Poorest † | ||||||||
Poorer | 0.975 | 0.230 | 1.048 | 0.314 | 0.117 | 0.145 | 0.543 | 0.460 |
Middle | 0.719 | 0.186 | 1.021 | 0.306 | 0.054 * | 0.069 | 0.893 | 0.440 |
Richer | 1.117 | 0.316 | 0.974 | 0.320 | 0.402 | 0.298 | 0.198 | 0.174 |
Richest | 0.474 | 0.182 | 1.584 | 0.514 | 0.289 | 0.269 | 0.347 | 0.289 |
Injury insurance | ||||||||
Yes † | ||||||||
No | 0.543 * | 0.169 | 0.819 | 0.290 | 0.803 | 0.632 | 2.532 | 3.517 |
number of friends | ||||||||
<= 5 † | ||||||||
6~10 | 1.038 | 0.220 | 0.875 | 0.201 | 1.260 | 0.835 | 0.230 | 0.263 |
>=11 | 0.504 * | 0.170 | 1.024 | 0.258 | 0.353 | 0.353 | 0.700 | 0.634 |
SAH | ||||||||
Good † | ||||||||
Fair | 3.448 *** | 0.889 | −0.051 | 0.250 | 5.663 * | 3.981 | 1.309 | 0.622 |
Poor | 8.715 *** | 3.182 | 0.427 | 0.302 | 17.599 *** | 7.694 | 0.444 | 1.243 |
Health behavior | ||||||||
Smoke | ||||||||
Yes † | ||||||||
No | 1.312 | 0.426 | −0.332 | 0.331 | 0.129 | 0.134 | 0.033 | 0.035 |
Alcohol use | ||||||||
Yes † | ||||||||
No | 1.221 | 0.392 | −0.363 | 0.292 | 1.927 | 1.563 | 0.163 | 0.231 |
Regular exercise every month | ||||||||
Yes † | ||||||||
No | 0.656 * | 0.123 | −0.109 | 0.252 | 11.919 | 12.816 | 0.158 *** | 0.084 |
Health outcome | ||||||||
Sense of happiness | ||||||||
Unhappy † | ||||||||
Fair | 0.999 | 0.386 | 0.546 | 0.515 | 0.311 | 0.302 | 0.112 | 0.134 |
Happy | 0.784 | 0.300 | 0.488 | 0.479 | 0.525 | 0.478 | 0.133 | 0.178 |
Contextual characteristic | ||||||||
Proportion of ethnic minorities | 1.000 | 0.006 | 0.175 * | 0.006 | 0.990 | 0.070 | 0.965 | 0.083 |
Per capita in the community | 1.000 | 2.02 × 10−4 | 1.64 × 10−5 | 1.15 × 10−5 | 1.000 | 0.000 | 1.000 | 0.000 |
Region | ||||||||
East † | ||||||||
Middle | 0.890 | 0.285 | −0.192 | 0.300 | 0.856 | 1.007 | 4.840 | 5.053 |
West | 0.872 | 0.352 | −0.042 | 0.349 | 0.112 | 0.161 | 0.403 | 0.615 |
City level | ||||||||
Sub-provincial city and above | ||||||||
Other | 1.261 | 0.428 | 0.068 | −0.294 | 0.538 | 0.753 | 0.27 | 0.103 |
Number of medical institutions for 10,000 people in the community | 3.96 × 10−5 | 4.14 × 10−4 | −1.135 | −0.388 | 7.22 × 10−12 | 2.74 × 10−25 | 0.858 | 0.579 |
Number of medical institutions for 10,000 people in the city | 1.003 | 0.102 | −0.277 * | −0.117 | 0.250 | 0.767 | 0.979 | 0.016 |
Number of doctors for 10,000 people in the city | 1.002 | 0.004 | 0.001 | −0.003 | 1.014 | 0.013 | 1.020 | 0.014 |
Number of beds for 10,000 people in the city | 0.985 | 0.011 | −0.006 | −0.01 | 0.986 | 0.013 | 0.654 | 0.645 |
Health index of the community | 0.872 | 0.129 | 0.401 | −0.317 | 0.829 | 0.948 | 1.403 | 0.844 |
Service quality index of the community | 1.086 | 0.174 | 0.049 | −0.133 | 0.850 | 0.314 | 0.425 | 0.358 |
Urban service quality index | 0.985 | 0.226 | 0.174 | −0.221 | 0.170 | 0.174 | 0.364 | 0.358 |
Intercept | 0.296 | 0.277 | 10.360 *** | −1.02 | 0.311 | 0.302 | 0.112 | 0.134 |
Terms of Decomposition | Two-Week Outpatient Service | Inpatient Service | ||
---|---|---|---|---|
Total gap (%) | −0.004 | −0.008 | ||
Explained (%) | 23.10 | 87.22 | ||
Explained | ||||
Contribution to difference | Coef. | Contribution (%) | Coef. | Contribution (%) |
Age group | −0.007 | 1.57 | −0.130 | 10.53 |
Gender | 0.051 | −11.93 | 0.046 | −3.76 |
Living arrangement | 0.027 | −6.24 | 0.009 | −0.76 |
Educational level | 2.99 × 10−4 | −0.002 | −0.116 | 9.41 |
Technical certificate | −0.037 | 8.56 | −0.170 | 13.81 |
Type of industry | 0.506 | −117.61 | 0.058 | −4.69 |
Type of unit | 0.037 | −8.56 | 0.236 | −19.14 |
Working hours | −0.023 | 5.41 | 0.063 | −5.12 |
Income quantiles | 0.046 | −10.63 | 0.048 | −3.85 |
Injury insurance | −0.005 | 1.19 | 0.019 | −1.5 |
Number of friends | 0.126 | −29.36 | 0.449 | −36.35 |
SAH | 0.191 | −44.37 | −0.002 | 0.15 |
Smoking | −0.353 | 82.17 | −0.207 | 16.73 |
Alcohol use | −0.025 | 5.74 | 0.070 | −5.65 |
Regular exercise every month | 0.073 | −16.88 | −0.323 | 26.15 |
Sense of fairness | −0.096 | 22.39 | 0.001 | −0.05 |
Proportion of ethnic minorities | 0.176 | −40.86 | −0.162 | 13.15 |
Per capita in the community | −0.095 | 22.01 | 0.067 | −5.41 |
Region | −0.251 | 58.29 | 0.596 | −48.27 |
City level | 0.045 | −10.52 | −0.039 | 3.15 |
Number of medical institutions for 10,000 people in the community | 0.175 | −40.73 | −1.744 | 141.29 |
Number of medical institutions for 10,000 people in the city | −0.096 | 22.36 | −0.064 | 5.15 |
Number of doctors for 10,000 people in the city | −0.386 | 89.74 | 2.265 | −183.44 |
Number of beds for 10,000 people in the city | 0.369 | −85.93 | −1.461 | 118.35 |
Health index of the community population | −0.516 | 119.97 | −1.375 | 111.36 |
Service quality index of community | −0.080 | 18.64 | 0.121 | −9.84 |
Service quality index of city | 0.049 | −11.35 | 0.669 | −54.18 |
Difference caused by need | 0.002 | −54.73 | −5.54 × 10−4 | 6.92 |
Inequity index | −0.006 | 154.73 | −0.007 | 93.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhu, L.; Zhang, J.; Yang, J. Decomposing Differences of Health Service Utilization among Chinese Rural Migrant Workers with New Cooperative Medical Scheme: A Comparative Study. Int. J. Environ. Res. Public Health 2021, 18, 9291. https://doi.org/10.3390/ijerph18179291
Li D, Zhu L, Zhang J, Yang J. Decomposing Differences of Health Service Utilization among Chinese Rural Migrant Workers with New Cooperative Medical Scheme: A Comparative Study. International Journal of Environmental Research and Public Health. 2021; 18(17):9291. https://doi.org/10.3390/ijerph18179291
Chicago/Turabian StyleLi, Dan, Liang Zhu, Jian Zhang, and Jinjuan Yang. 2021. "Decomposing Differences of Health Service Utilization among Chinese Rural Migrant Workers with New Cooperative Medical Scheme: A Comparative Study" International Journal of Environmental Research and Public Health 18, no. 17: 9291. https://doi.org/10.3390/ijerph18179291
APA StyleLi, D., Zhu, L., Zhang, J., & Yang, J. (2021). Decomposing Differences of Health Service Utilization among Chinese Rural Migrant Workers with New Cooperative Medical Scheme: A Comparative Study. International Journal of Environmental Research and Public Health, 18(17), 9291. https://doi.org/10.3390/ijerph18179291