Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 17 May 2021).
- Barroso, T.A.; Marins, L.B.; Alves, R.; Gonçalves, A.C.S.; Barroso, S.G.; Rocha, G.S. Association of central obesity with the incidence of cardiovascular diseases and risk factors. Int. J. Cardiovasc. Sci. 2017, 30, 416–424. [Google Scholar] [CrossRef]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada. The Biology of Brassica napus L. (Canola/Rapeseed). Available online: https://inspection.canada.ca/plant-varieties/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-napus-l-/eng/1330729090093/1330729278970 (accessed on 17 July 2021).
- USDA Economic Research Services. Oil Crops Yearbook. Available online: https://www.ers.usda.gov/data-products/oil-crops-yearbook/ (accessed on 18 July 2021).
- Dupont, J.; White, P.J.; Johnston, K.M.; Heggtveit, H.A.; McDonald, B.E.; Grundy, S.M.; Bonanome, A. Food safety and health effects of canola oil. J. Am. Coll. Nutr. 1989, 8, 360–375. [Google Scholar] [CrossRef]
- Gunstone, F.D. Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd ed; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; p. 365. [Google Scholar]
- Orlovius, K. Fertilizing for High Yield and Quality Oilseed Rape. Available online: moz-extension://418f0c82-883e-4149-838d-624d93f7c2dd/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.ipipotash.org%2Fuploads%2Fudocs%2FNo%252016%2520Oilseed%2520rape.pdf (accessed on 18 July 2021).
- Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J. Evidence of health benefits of canola oil. Nutr. Rev. 2013, 71, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.S.; Vogel, S.; Lammi-Keefe, C.J.; Ordovas, J.M.; Schaefer, E.J.; Li, Z.; Ausman, L.M.; Gualtieri, L.; Goldin, B.R.; Furr, H.C.; et al. Varying dietary fat type of reduced-fat diets has little effect on the susceptibility of LDL to oxidative modification in moderately hypercholesterolemic subjects. J. Nutr. 1998, 128, 1703–1709. [Google Scholar] [CrossRef][Green Version]
- Mendez, C.; Jurkovich, G.J.; Wener, M.H.; Garcia, I.; Mays, M.; Maier, R.V. Effects of supplemental dietary arginine, canola oil, and trace elements on cellular immune function in critically injured patients. Shock 1996, 6, 7–12. [Google Scholar] [CrossRef]
- Chmelík, Z.; Šnejdrlová, M.; Vrablík, M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr. Res. 2019, 72, 36–45. [Google Scholar] [CrossRef]
- Ulbricht, C.; Abrams, T.; Conquer, J.; Costa, D.; Grimes Serrano, J.M.; Taylor, S.; Varghese, M. An evidence-based systematic review of amaranth (Amaranthus spp.) by the natural standard research collaboration. J. Diet. Suppl. 2009, 6, 390–417. [Google Scholar] [CrossRef]
- Mosyakin, S.L. New taxa of Corispermum L. (Chenopodiaceae), with preliminary comments on the taxonomy of the genus in North America. Novon 1995, 5, 340–353. [Google Scholar] [CrossRef]
- Lorenz, K.; Hwang, Y. Lipids in amaranths. Nutr. Rep. Int. 1985, 31, 83. [Google Scholar]
- Czaplicki, S.; Ogrodowska, D.; Zadernowski, R.; Derewiaka, D. Characteristics of biologically-active substances of amaranth oil obtained by various techniques. Pol. J. Food Nutr. Sci. 2012, 62, 235–239. [Google Scholar] [CrossRef]
- Kulakova, S.; Pozdniakov, A.; Korf, I.; Karagodina, Z.; Medvedev, F.; Viktorova, E.; Gonor, K.V.; Kamysheva, I.M.; Gadzhieva, Z.M. Amaranths oil: peculiarities of chemical composition and influence on lipid metabolism by rats. Vopr. Pitan. 2006, 75, 36–42. [Google Scholar]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Duś-Żuchowska, M.; Walkowiak, J.; Morawska, A.; Krzyżanowska-Jankowska, P.; Miśkiewicz-Chotnicka, A.; Przysławski, J.; Lisowska, A. Amaranth oil increases total and LDL cholesterol levels without influencing early markers of atherosclerosis in an overweight and obese population: a randomized double-blind cross-over study in comparison with rapeseed oil supplementation. Nutrients 2019, 11, 3069. [Google Scholar] [CrossRef]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maier, S.M.; Turner, N.D.; Lupton, J.R. Serum lipids in hypercholesterolemic men and women consuming oat bran and amaranth products. Cereal Chem. 2000, 77, 297–302. [Google Scholar] [CrossRef]
- Chmelík, Z.; Kotolová, H.; Piekutowská, Z.; Horská, K.; Bartosová, L.; Suchý, P.; Kollár, P. A comparison of the impact of amaranth flour and squalene on plasma cholesterol in mice with diet-induced dyslipidemia. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 251–255. [Google Scholar]
- Chmelík, Z.; Kotolová, H.; Zavalova, V.; Bartošová, L.; Suchý, P.; Kollár, P. The effect of amaranth flour on plasma cholesterol profile in mice with diet-induced dyslipidaemia. Curr. Top. Nutraceut. R. 2013, 11, 67–73. [Google Scholar]
- Shin, D.H.; Heo, H.J.; Lee, Y.J.; Kim, H.K. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. Br. J. Biomed. Sci. 2004, 61, 11–14. [Google Scholar] [CrossRef]
- Vecchi, B.; Añón, M.C. ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry 2009, 70, 864–870. [Google Scholar] [CrossRef]
- Masciaelli, R.; Tosi, E.A.; Ciappini, M.C. Ulización de la harina integral de amaranto (Amaranthus cruentus) en la fabricación de galletas para celíacos-Dialnet. Aliment. Rev. Tecnol. Hig. Los Aliment. 1996, 269, 49–52. [Google Scholar]
- Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-inhibitory activity of amaranth proteins. J. Food Sci. 2009, 74, H121–H126. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.J.; Cho, H.Y.; Kim, E.K.; Shin, D.H. Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2006, 24, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Moszak, M.; Zawada, A.; Juchacz, A.; Grzymisławski, M.; Bogdański, P. Comparison of the effect of rapeseed oil or amaranth seed oil supplementation on weight loss, body composition, and changes in the metabolic profile of obese patients following 3-week body mass reduction program: a randomized clinical trial. Lipids Health Dis. 2020, 19, 143. [Google Scholar] [CrossRef]
- Gonor, K.V.; Pogozheva, A.V.; Kulakova, S.N.; Medvedev, F.A.; Miroshnichenko, L.A. The influence of diet with including amaranth oil on lipid metabolism in patients with ischemic heart disease and hyperlipoproteidemia. Vopr. Pitan. 2006, 75, 17–21. [Google Scholar] [PubMed]
- Berger, A.; Gremaud, G.; Baumgartner, M.; Rein, D.; Monnard, I.; Kratky, E.; Geiger, W.; Burri, J.; Dionisi, F.; Allan, M.; et al. Cholesterol-lowering properties of amaranth grain and oil in hamsters. Int. J. Vitam. Nutr. Res. 2003, 73, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, N.; Asgary, S.; Madani, H.; Mahzouni, P. Effects of Amaranthus caudatus L. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. J. Med. Plant. Res. 2010, 4, 355–361. [Google Scholar]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: extension to randomised crossover trials. BMJ 2019, 366, 4378. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–439. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- León-Pedroza, J.I.; González-Tapia, L.A.; del Olmo-Gil, E.; Castellanos-Rodríguez, D.; Escobedo, G.; González-Chávez, A. Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cirugia Cirujanos. 2015, 83, 543–551. [Google Scholar] [CrossRef]
- Mahley, R.W.; Innerarity, T.L.; Rall, S.C.; Weisgraber, K.H. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294. [Google Scholar] [CrossRef]
- Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calò, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm. 2013, 2013, 714653. [Google Scholar] [CrossRef]
- Fattore, E.; Fanelli, R. Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. Int. J. Food Sci. Nutr. 2013, 64, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.J.; Shin, D.H. Improvement of lipid profile by amaranth (Amaranthus esculantus) supplementation in streptozotocin-induced diabetic rats. Ann. Nutr. Metab. 2006, 50, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, L.; Zoloedov, V.; Volynkina, A.; Kulakova, S. Influence dietary therapy with use sunflower and amaranth oils on parameters of immune reactivity in patients with diabetes mellitus 2 types. Vopr. Pitan. 2009, 78, 30–36. [Google Scholar] [PubMed]
- Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cardona, E.E.; Hernández-Domínguez, E.E.; Huerta-Ocampo, J.Á.; Jiménez-Islas, H.; Díaz-Gois, A.; Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Goñi-Ochoa, A.; de la Rosa, A.P.B. Effect of amaranth consumption on diabetes-related biomarkers in patients with diabetes. Diab. Obes. Metab. Disor. 2017, 3, 5–10. [Google Scholar]
- He, H.; Cai, Y.; Sun, M.; Corke, H. Extraction and purification of squalene from amaranthus grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef]
- Gillingham, L.G.; Gustafson, J.A.; Han, S.Y.; Jassal, D.S.; Jones, P.J. High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Br. J. Nutr. 2011, 105, 417–427. [Google Scholar] [CrossRef]
- Bowen, K.J.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Jenkins, D.J.A.; Taylor, C.G.; Zahradka, P.; et al. Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. J. Nutr. 2019, 149, 471–478. [Google Scholar] [CrossRef]
Total (n = 44) | Arm I (n = 23) | Arm II (n = 21) | p | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | ||
Sex [% of women] 1 | 32 (72.7%) | 17 (73.9%) | 15 (71.4%) | 0.8534 | |||
Age [years] | 49 ± 10 (46–52) | 49 (42–56) | 49 ± 9 (45–54) | 51 (42–59) | 48 ± 11 (43–53) | 48 (42–56) | 0.5409 |
Body weight [kg] | 87.7 ± 15.1 (83.1–92.3) | 89.8 (73.4–100.3) | 83.8 ± 16.3 (76.8–90.9) | 85.9 (68.8–95.6) | 91.9 ± 12.6 (86.2–97.7) | 90.2 (85.8–101.4) | 0.1074 |
BMI [kg/m2] | 31.00 ± 4.61 (29.60–32.40) | 30.60 (27.44–33.16) | 29.86 ± 4.65 (27.85–31.87) | 28.36 (25.73–32.35) | 32.25 ± 4.33 (30.27–34.22) | 31.04 (30.10–34.52) | 0.0668 |
TNF-α [pg/mL] | 4.91 ± 1.19 (4.55–5.27) | 4.85 (3.87–5.70) | 4.88 ± 1.12 (4.40–5.36) | 4.85 (3.87–5.52) | 4.94 ± 1.29 (4.35–5.53) | 4.91 (3.79–6.07) | 0.6382 |
ox-LDL [ng/mL] | 722.6 ± 357.3 (613.9–831.2) | 498.3 (428.3–1200.0) | 704.3 ± 347.0 (554.2–854.3) | 502.8 (420.8–1170.3) | 742.6 ± 375.7 (571.6–913.6) | 487.4 (446.5–1200.0) | 0.8304 |
ApoE [µg/mL] | 101.5 ± 67.1 (81.1–121.9) | 82.6 (62.8–120.4) | 99.7 ± 68.6 (70.1–129.4) | 75.2 (54.8–125.6) | 103.5 ± 67.2 (72.9–134.1) | 85.6 (65.2–106.0) | 0.6217 |
ApoA1 [g/l] | 1.67 ± 0.35 (1.57–1.78) | 1.67 (1.43–1.85) | 1.64 ± 0.39 (1.48–1.82) | 1.58 (1.41–1.90) | 1.70 ± 0.31 (1.56–1.84) | 1.72 (1.55–1.83) | 0.5333 |
ApoB [g/l] | 1.08 ± 0.26 (1.00–1.16) | 1.01 (0.95–1.18) | 1.10 ± 0.28 (0.98–1.23) | 0.99 (0.94–1.25) | 1.05 ± 0.23 (0.95–1.16) | 1.01 (0.95–1.09) | 0.8051 |
ApoB/A1 | 0.68 ± 0.23 (0.61–0.75) | 0.62 (0.51–0.81) | 0.71 ± 0.27 (0.60–0.83) | 0.72 (0.49–0.92) | 0.64 ± 0.17 (0.56–0.71) | 0.58 (0.53–0.75) | 0.4521 |
Glucose [mg/dl] | 105 ± 14 (100–109) | 101 (97–108) | 102 ± 10 (98–107) | 102 (96–112) | 108 ± 18 (100–116) | 100 (98–107) | 0.5100 |
Inulin [µU/mL] | 18.1 ± 15.4 (13.4–22.7) | 13.4 (9.1–19.3) | 13.6 ± 6.4 (10.8–16.3) | 12.1 (8.4–19.0) | 22.9 ± 20.4 (13.6–32.3) | 13.6 (11.2–24.1) | 0.1842 |
HOMA | 5.00 ± 5.68 (3.27–6.73) | 3.36 (2.36–5.10) | 3.46 ± 1.78 (2.68–4.23) | 2.91 (2.06–4.36) | 6.69 ± 7.75 (3.16–10.22) | 3.48 (2.63–5.83) | 0.1326 |
QUICKI | 0.53 ± 0.08 (0.51–0.56) | 0.53 (0.49–0.58) | 0.55 ± 0.07 (0.52–0.58) | 0.55 (0.50–0.60) | 0.51 ± 0.08 (0.47–0.55) | 0.53 (0.47–0.57) | 0.1326 |
Adiponectin [µg/mL] | 7.55 ± 4.50 (6.18–8.92) | 6.19 (4.56–8.76) | 7.89 ± 4.64 (5.89–9.90) | 7.85 (4.22–11.61) | 7.17 ± 4.43 (5.15–9.19) | 5.80 (4.58–7.64) | 0.6384 |
Amaranth Oil | Rapeseed Oil | p | |||
---|---|---|---|---|---|
Mean ± SD (95%CI) | Median (IQR) | Mean ± SD (95%CI) | Median (IQR) | ||
Δ TNF-α [pg/mL] | 0.03 ± 0.90 (−0.24–0.30) | 0.21 (−0.58–0.60) | 0.16 ± 1.55 (−0.31–0.63) | 0.21 (−0.73–0.54) | 0.9071 |
Δ ox-LDL [ng/mL] | 1.2 ± 89.5 (−26.0–28.4) | 0.0 (−46.9–31.5) | −7.6 ± 101.7 (−38.5–23.3) | 0.0 (−56.5–41.2) | 0.7005 |
Δ ApoE [µg/mL] | 1.4 ± 43.6 (−11.9–14.7) | 2.6 (−16.6–27.7) | −7.0 ± 45.9 (−20.9–6.9) | −7.6 (−16.2–11.5) | 0.3104 |
Δ ApoA1 [g/l] | 0.03 ± 0.22 (−0.04–0.10) | 0.02 (−0.11–0.20) | −0.01 ± 0.21 (−0.07–0.06) | 0.01 (−0.10–0.11) | 0.6526 |
Δ ApoB [g/l] | 0.05 ± 0.20 (−0.01–0.11) | 0.07 (0.01–0.14) | −0.03 ± 0.11 (−0.07–0.00) | −0.01 (−0.12–0.03) | 0.0004 |
Δ ApoB/A1 | 0.01 ± 0.14 (−0.03–0.05) | 0.04 (0.00–0.07) | −0.02 ± 0.06 (−0.04–0.00) | −0.01 (−0.06–0.02) | 0.0113 |
Δ glucose [mg/dl] | −2 ± 10 (−5–1) | −3 (−8–5) | −2 ± 15 (−6–3) | −3 (−8–5) | 0.4763 |
Δ inulin [µU/mL] | −1.4 ± 12.6 (−5.2–2.5) | −0.6 (−4.8–1.9) | −2.5 ± 14.7 (−7.0–2.0) | −1.6 (−4.3–0.9) | 0.1352 |
Δ HOMA | −0.58 ± 4.14 (−1.84–0.68) | −0.30 (−1.21–0.51) | −0.74 ± 6.14 (−2.61–1.12) | −0.47 (−1.41–0.20) | 0.1446 |
Δ QUICKI | 0.01 ± 0.05 (−0.01–0.02) | 0.01 (−0.03–0.05) | 0.03 ± 0.06 (0.01–0.04) | 0.02 (−0.01–0.06) | 0.1758 |
Δ adiponectin [µg/mL] | 0.55 ± 1.10 (0.22–0.89) | 0.46 (0.02–1.01) | −0.29 ± 1.50 (−0.75–0.16) | −0.36 (−0.94–0.16) | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamka, M.; Morawska, A.; Krzyżanowska-Jankowska, P.; Bajerska, J.; Przysławski, J.; Walkowiak, J.; Lisowska, A. Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. Int. J. Environ. Res. Public Health 2021, 18, 8540. https://doi.org/10.3390/ijerph18168540
Jamka M, Morawska A, Krzyżanowska-Jankowska P, Bajerska J, Przysławski J, Walkowiak J, Lisowska A. Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. International Journal of Environmental Research and Public Health. 2021; 18(16):8540. https://doi.org/10.3390/ijerph18168540
Chicago/Turabian StyleJamka, Małgorzata, Anna Morawska, Patrycja Krzyżanowska-Jankowska, Joanna Bajerska, Juliusz Przysławski, Jarosław Walkowiak, and Aleksandra Lisowska. 2021. "Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial" International Journal of Environmental Research and Public Health 18, no. 16: 8540. https://doi.org/10.3390/ijerph18168540
APA StyleJamka, M., Morawska, A., Krzyżanowska-Jankowska, P., Bajerska, J., Przysławski, J., Walkowiak, J., & Lisowska, A. (2021). Comparison of the Effect of Amaranth Oil vs. Rapeseed Oil on Selected Atherosclerosis Markers in Overweight and Obese Subjects: A Randomized Double-Blind Cross-Over Trial. International Journal of Environmental Research and Public Health, 18(16), 8540. https://doi.org/10.3390/ijerph18168540