An Experimental Evidence on Public Acceptance of Genetically Modified Food through Advertisement Framing on Health and Environmental Benefits, Objective Knowledge, and Risk Reduction
Abstract
:1. Introduction
2. Literature Review and Theoretical Underpinning
2.1. Integrating Science Literacy Model (SLM) and Cognitive Miser Theory (CMT)
2.2. Objective Knowledge
2.3. Advertisement Message Framing
2.4. Perceived Risk Reduction
2.5. Attitudes towards GMF Usage
2.6. Acceptance of GMF Usage
2.7. Preference for Natural Food
3. Materials and Methods
3.1. Design, Participants, and Procedure
3.2. Instrumentation
3.2.1. Selection of Stimuli
3.2.2. Risk Perception Reduction
3.2.3. Objective Knowledge
3.2.4. Attitude towards GMF
3.2.5. Preference for Natural Products
3.2.6. Acceptance of GMF Usage
3.2.7. Control Variables and Demographic
4. Results
4.1. Descriptive and Demographic Analysis
4.2. Confirmatory Factor Analysis (CFA)
4.3. Hypothesis Testing
4.4. Mediation Analysis
4.5. Moderation Analysis
5. Discussion
5.1. Theoretical Implications
5.2. Managerial Implications
5.3. Limitations and Future Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Yashveer, S.; Singh, V.; Kaswan, V.; Kaushik, A.; Tokas, J. Green biotechnology, nanotechnology and bio-fortification: Perspectives on novel environment-friendly crop improvement strategies. Biotechnol. Genet. Eng. Rev. 2014, 30, 113–126. [Google Scholar] [CrossRef]
- Scherer, L.; Svenning, J.-C.; Huang, J.; Seymour, C.L.; Sandel, B.; Mueller, N.; Kummu, M.; Bekunda, M.; Bruelheide, H.; Hochman, Z.; et al. Global priorities of environmental issues to combat food insecurity and biodiversity loss. Sci. Total Environ. 2020, 730, 139096. [Google Scholar] [CrossRef] [PubMed]
- Vemireddy, L.R. Food and Nutrition Security: Biotechnology Intervention. Springer Sci. Rev. 2014, 2, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Grebenyuk, A.; Ravin, N. The long-term development of Russian biotech sector. Foresight 2017, 19, 491–500. [Google Scholar] [CrossRef]
- Dupont-Inglis, J.; Borg, A. Destination bioeconomy—The path towards a smarter, more sustainable future. New Biotechnol. 2018, 40, 140–143. [Google Scholar] [CrossRef]
- Sakellariou, M.; Mylona, P.V. New Uses for Traditional Crops: The Case of Barley Biofortification. Agronomy 2020, 10, 1964. [Google Scholar] [CrossRef]
- Kiely, M.; Cashman, K.D. Summary Outcomes of the ODIN Project on Food Fortification for Vitamin D Deficiency Prevention. Int. J. Environ. Res. Public Health 2018, 15, 2342. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G. Ecological Concerns about Genetically Modified (GM) Food Consumption using the Theory of Planned Behavior (TPB). Procedia Soc. Behav. Sci. 2014, 159, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Adeyeye, S.A.O.; Idowu-Adebayo, F. Genetically modified and biofortified crops and food security in developing countries. Nutr. Food Sci. 2019, 49, 978–986. [Google Scholar] [CrossRef]
- Liberal, Â.; Pinela, J.; Vívar-Quintana, A.M.; Ferreira, I.C.F.R.; Barros, L. Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. Foods 2020, 9, 1871. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Siipi, H.; Uusitalo, S. Consumer Autonomy and Availability of Genetically Modified Food. J. Agric. Environ. Ethic 2010, 24, 147–163. [Google Scholar] [CrossRef]
- Qaim, M.; Kouser, S. Genetically Modified Crops and Food Security. PLoS ONE 2013, 8, e64879. [Google Scholar] [CrossRef] [Green Version]
- Hingston, S.T.; Noseworthy, T.J. Why Consumers Don’t see the Benefits of Genetically Modified Foods, and what Marketers can do about It. J. Mark. 2018, 82, 125–140. [Google Scholar] [CrossRef]
- Lefebvre, S.; Cook, L.A.; Griffiths, M.A. Consumer perceptions of genetically modified foods: A mixed-method approach. J. Consum. Mark. 2019, 36, 113–123. [Google Scholar] [CrossRef]
- Lynch, D.; Vogel, D. The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics. Counc. For. Relat. 2001, 9, 1–39. [Google Scholar]
- Pham, N.; Mandel, N. What Influences Consumer Evaluation of Genetically Modified Foods? J. Public Policy Mark. 2019, 38, 263–279. [Google Scholar] [CrossRef]
- Rojas-Méndez, J.I.; Ahmed, S.A.; Claro-Riethmüller, R.; Spiller, A. Acceptance of Genetically Modified Foods with Health Benefits: A Study in Germany. J. Food Prod. Mark. 2012, 18, 200–221. [Google Scholar] [CrossRef]
- Guo, Q.; Yao, N.; Zhu, W. How consumers’ perception and information processing affect their acceptance of genetically modified foods in China: A risk communication perspective. Food Res. Int. 2020, 137, 109518. [Google Scholar] [CrossRef]
- Flipse, S.M.; Osseweijer, P. Media attention to GM food cases: An innovation perspective. Public Underst. Sci. 2012, 22, 185–202. [Google Scholar] [CrossRef]
- Santos, L.; Escanciano, C. Benefits of the ISO 9000:1994 system: Some considerations to reinforce competitive advantage. Int. J. Qual. Reliab. Manag. 2002, 19, 321–344. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, H.; Bai, J.; Pray, C. Awareness, acceptance of and willingness to buy genetically modified foods in Urban China. Appetite 2006, 46, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.H.; Abu Bakar, H.; Mohamad, B. The effects of advertising appeals on consumers’ behavioural intention towards global brands: The mediating role of attitude and the moderating role of uncertainty avoidance. J. Islam. Mark. 2019, 11, 440–460. [Google Scholar] [CrossRef]
- Eacute, J. Consumer Acceptance of Genetically Modified Food (GM) in Spain: A Structural Equation Approach. Risk Manag. 2008, 10, 194–204. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Barone, B.; Behrens, J.H. Genetically modified foods and their social representation. Food Res. Int. 2016, 84, 120–127. [Google Scholar] [CrossRef]
- Lehrer, R.; Schauble, L. Scientific Thinking and Science Literacy. In Handbook of Child Psychology; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jurkiewicz, A. Attitudes of Polish Adolescents toward Genetically Modified Organisms and Genetically Modified Food. In Genetically Modified Organisms in Food; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 413–421. [Google Scholar]
- Sudbury-Riley, L.; Edgar, L. Why Older Adults Show Preference for Rational Over Emotional Advertising Appeals: A U.K. Brand Study Challenges the Applicability Of Socioemotional Selectivity Theory to Advertising. J. Advert. Res. 2016, 56, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Fung, M.S. An IMB model testing via endorser types and advertising appeals on young people’s attitude towards cervical cancer prevention advertisement in Hong Kong. Young Consum. 2017, 18, 1–18. [Google Scholar] [CrossRef]
- Bekk, M.; Spörrle, M.; Völckner, F.; Spieß, E.; Woschée, R. What is not beautiful should match: How attractiveness similarity affects consumer responses to advertising. Mark. Lett. 2017, 28, 509–522. [Google Scholar] [CrossRef]
- Grigaliunaite, V.; Pileliene, L. Emotional or Rational? The Determination of the Influence of Advertising Appeal on Advertising Effectiveness. Sci. Ann. Econ. Bus. 2016, 63, 391–414. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M. Different Impacts of Advertising Appeals on Advertising Attitude for High and Low Involvement Products. Glob. Bus. Rev. 2015, 16, 478–493. [Google Scholar] [CrossRef]
- Ho, S.S.; Kim, N.; Looi, J.; Leong, A.D. Care, competency, or honesty? Framing emergency preparedness messages and risks for nuclear energy in Singapore. Energy Res. Soc. Sci. 2020, 65, 101477. [Google Scholar] [CrossRef]
- Son, J.; Lee, J.; Oh, O.; Lee, H.K.; Woo, J. Using a Heuristic-Systematic Model to assess the Twitter user profile’s impact on disaster tweet credibility. Int. J. Inf. Manag. 2020, 54, 102176. [Google Scholar] [CrossRef]
- Kajale, D.B.; Becker, T.C. Factors Influencing Young Consumers’ Acceptance of Genetically Modified Food in India. J. Food Prod. Mark. 2014, 21, 461–481. [Google Scholar] [CrossRef]
- Slovic, P.; Fischhoff, B.; Lichtenstein, S. Why Study Risk Perception? Risk Anal. 1982, 2, 83–93. [Google Scholar] [CrossRef]
- Wahab, Z.; Tama, R.A.; Shihab, M.S.; Widad, A.; Nofiawaty, N.; Diah, Y.M. Analysis The Effect Of Enviromental Concern And Green Advertising To Green Purchasing In Palembang City. Sriwij. Int. J. Dyn. Econ. Bus. 2017, 1, 297–310. [Google Scholar] [CrossRef]
- van der Linden, S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, X. Effects of Knowledge on Attitude Formation and Change toward Genetically Modified Foods. Risk Anal. 2015, 35, 790–810. [Google Scholar] [CrossRef]
- Crisp, R.J.; Turner, R.N. Essential Social Psychology; Sage: Los Angeles, CA, USA, 2010. [Google Scholar]
- Scheufele, D.A.; Corley, E.A.; Shih, T.-J.; Dalrymple, K.E.; Ho, S.S. Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nat. Nanotechnol. 2008, 4, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Henwood, K.L.; Parkhill, K.A.; Pidgeon, N.F. Science, technology and risk perception. Equal. Oppor. Int. 2008, 27, 662–676. [Google Scholar] [CrossRef]
- Ho, S.S.; Leong, A.D.; Looi, J.; Chen, L.; Pang, N.; Tandoc, E. Science Literacy or Value Predisposition? A Meta-Analysis of Factors Predicting Public Perceptions of Benefits, Risks, and Acceptance of Nuclear Energy. Environ. Commun. 2018, 13, 457–471. [Google Scholar] [CrossRef]
- Scheufele, D.A. Agenda-Setting, Priming, and Framing Revisited: Another Look at Cognitive Effects of Political Communication. Mass Commun. Soc. 2000, 3, 297–316. [Google Scholar] [CrossRef]
- Chuah, A.S.F.; Leong, A.D.; Cummings, C.L.; Ho, S.S. Label it or ban it? Public perceptions of nano-food labels and propositions for banning nano-food applications. J. Nanopart. Res. 2018, 20, 36. [Google Scholar] [CrossRef]
- Klerck, D.; Sweeney, J.C. The effect of knowledge types on consumer-perceived risk and adoption of genetically modified foods. Psychol. Mark. 2007, 24, 171–193. [Google Scholar] [CrossRef]
- Aertsens, J.; Mondelaers, K.; Verbeke, W.; Buysse, J.; Van Huylenbroeck, G. The influence of subjective and objective knowledge on attitude, motivations and consumption of organic food. Br. Food J. 2011, 113, 1353–1378. [Google Scholar] [CrossRef]
- Seegebarth, B.; Backhaus, C.; Woisetschläger, D.M. The role of emotions in shaping purchase intentions for innovations using emerging technologies: A scenario-based investigation in the context of nanotechnology. Psychol. Mark. 2019, 36, 844–862. [Google Scholar] [CrossRef]
- Ho, S.S.; Yang, X. Communication, cognitive processing, and public knowledge about climate change. Asian J. Commun. 2018, 28, 449–467. [Google Scholar] [CrossRef]
- Han, T.-I. Objective knowledge, subjective knowledge, and prior experience of organic cotton apparel. Fash. Text. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Paek, H.-J.; Hove, T. Risk Perceptions and Risk Characteristics. In Oxford Research Encyclopedia of Communication; Oxford University Press: Oxford, UK, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Dobson, D.S.; Poels, K. Combined framing effects on attitudes and behavioral intentions toward mortgage advertisements. Int. J. Bank Mark. 2020, 38, 961–986. [Google Scholar] [CrossRef]
- Jäger, A.-K.; Weber, A. Can you believe it? The effects of benefit type versus construal level on advertisement credibility and purchase intention for organic food. J. Clean. Prod. 2020, 257, 120543. [Google Scholar] [CrossRef]
- Raza, S.; Zaman, U.; Iftikhar, M.; Shafique, O. An Experimental Evidence on Eco-Friendly Advertisement Appeals and Intention to Use Bio-Nanomaterial Plastics: Institutional Collectivism and Performance Orientation as Moderators. Int. J. Environ. Res. Public Health 2021, 18, 791. [Google Scholar] [CrossRef]
- Nettelhorst, S.C.; Brannon, L.A. The effect of advertisement choice, sex, and need for cognition on attention. Comput. Hum. Behav. 2012, 28, 1315–1320. [Google Scholar] [CrossRef]
- Raza, S.H.; Adamu, A.A.; Ogadimma, E.C.; Hasnain, A. The Influences of Political Values Manifested in Advertisements on Political Participation: Moderating Roles of Self-transcendence and Conservation. J. Creat. Commun. 2020, 15, 318–341. [Google Scholar] [CrossRef]
- Orth, U.R.; Koenig, H.F.; Firbasova, Z. Cross-national differences in consumer response to the framing of advertising messages: An exploratory comparison from Central Europe. Eur. J. Mark. 2007, 41, 327–348. [Google Scholar] [CrossRef]
- McCormick, K. Celebrity endorsements: Influence of a product-endorser match on Millennials attitudes and purchase intentions. J. Retail. Consum. Serv. 2016, 32, 39–45. [Google Scholar] [CrossRef]
- Sallam, M.A.A.; Wahid, N.A. Endorser Credibility Effects on Yemeni Male Consumer’s Attitudes towards Advertising, Brand Attitude and Purchase Intention: The Mediating Role of Attitude toward Brand. Int. Bus. Res. 2012, 5, 55. [Google Scholar] [CrossRef]
- Kirk, S.F.; Greenwood, D.; Cade, J.E.; Pearman, A.D. Public perception of a range of potential food risks in the United Kingdom. Appetite 2002, 38, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finucane, M.L.; Alhakami, A.; Slovic, P.; Johnson, S.M. The affect heuristic in judgments of risks and benefits. J. Behav. Decis. Mak. 2000, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, N.; Dockter, C.E. Effects of Message Presentation Type on GM Food Risk Perception, Similarity Judgment, and Attitude. Health Commun. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Landrum, A.R.; Hallman, W.K.; Jamieson, K.H. Examining the Impact of Expert Voices: Communicating the Scientific Consensus on Genetically-modified Organisms. Environ. Commun. 2018, 13, 51–70. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes. Eur. Rev. Soc. Psychol. 2000, 11, 1–33. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. The influence of attitudes on behaviour. In The Handbook of Attitudes; Lawrence Erlbaum Associates: Mahwah, ZJ, USA, 2005; pp. 173–221. [Google Scholar]
- Albarracin, D.; Shavitt, S. Attitudes and Attitude Change. Annu. Rev. Psychol. 2018, 69, 299–327. [Google Scholar] [CrossRef]
- Mulderij-Jansen, V.; Elsinga, J.; Gerstenbluth, I.; Duits, A.; Tami, A.; Bailey, A. Understanding risk communication for prevention and control of vector-borne diseases: A mixed-method study in Curaçao. PLoS Negl. Trop. Dis. 2020, 14, e0008136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Huang, J.; Pray, C.; Rozelle, S. Consumers’ trust in government and their attitudes towards genetically modified food: Empirical evidence from China. J. Chin. Econ. Bus. Stud. 2012, 10, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Chavas, J.P.; Nauges, C. Uncertainty, learning, and technology adoption in agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, W.; Kim, M. An international comparative analysis of public acceptance of nuclear energy. Energy Policy 2014, 66, 475–483. [Google Scholar] [CrossRef]
- Ho, S.S.; Goh, T.J.; Chuah, A.S.F.; Leung, Y.W.; Bekalu, M.A.; Viswanath, K. Past Debates, Fresh Impact on Nano-Enabled Food: A Multigroup Comparison of Presumed Media Influence Model Based on Spillover Effects of Attitude toward Genetically Modified Food. J. Commun. 2020, 70, 598–621. [Google Scholar] [CrossRef]
- Ismail, K.; Vivishna, S.; Khurram, W.; Jafri, S.K.A. Evaluating consumer purchase intentions for genetically modified food in Malaysia: A comparative study of muslim and non-muslim consumers. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 466–474. [Google Scholar]
- Hechter, M.; Kanazawa, S. Sociological Rational Choice Theory. In Rational Choice Sociology; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 2–25. [Google Scholar]
- Folkvord, F.; Roes, E.; Bevelander, K. Promoting healthy foods in the new digital era on Instagram: An experimental study on the effect of a popular real versus fictitious fit influencer on brand attitude and purchase intentions. BMC Public Health 2020, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Skiba, T.; Wildman, J.L. Uncertainty Reducer, Exchange Deepener, or Self-Determination Enhancer? Feeling Trust Versus Feeling Trusted in Supervisor-Subordinate Relationships. J. Bus. Psychol. 2018, 34, 219–235. [Google Scholar] [CrossRef]
- Ali, S.; Nawaz, M.A.; Ghufran, M.; Hussain, S.N.; Hussein, A.S. GM trust shaped by trust determinants with the impact of risk/benefit framework: The contingent role of food technology neophobia. GM Crops Food 2021, 12, 170–191. [Google Scholar] [CrossRef]
- Lee, H.-J.; Yun, Z.-S. Consumers’ perceptions of organic food attributes and cognitive and affective attitudes as determinants of their purchase intentions toward organic food. Food Qual. Prefer. 2015, 39, 259–267. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Black, W.; Babin, B.J. Multivariate data analysis: Its approach, evolution, and impact. In The Great Facilitator; Springer: Berlin/Heidelberg, Germany, 2019; pp. 121–130. [Google Scholar]
- Lawshe, C.H. A Quantitative Approach to Content Validity. Pers. Psychol. 1975, 28, 563–575. [Google Scholar] [CrossRef]
- Hinkin, T.R.; Tracey, J.B. An Analysis of Variance Approach to Content Validation. Organ. Res. Methods 1999, 2, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.L.; Nicholls, A.R.; Clough, P.J.; Crust, L. Assessing Model Fit: Caveats and Recommendations for Confirmatory Factor Analysis and Exploratory Structural Equation Modeling. Meas. Phys. Educ. Exerc. Sci. 2015, 19, 12–21. [Google Scholar] [CrossRef]
- Huta, V. When to Use Hierarchical Linear Modeling. Quant. Methods Psychol. 2014, 10, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Finch, H. Measurement Invariance. In Encyclopedia of Quality of Life and Well-Being Research; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; pp. 3909–3912. [Google Scholar]
- Ho, S.S.; Yang, X.; Thanwarani, A.; Chan, J.M. Examining public acquisition of science knowledge from social media in Singapore: An extension of the cognitive mediation model. Asian J. Commun. 2016, 27, 193–212. [Google Scholar] [CrossRef]
- Lee, E.-J.; Kim, Y.W. Effects of infographics on news elaboration, acquisition, and evaluation: Prior knowledge and issue involvement as moderators. New Media Soc. 2016, 18, 1579–1598. [Google Scholar] [CrossRef]
Demographic | Frequency | Percentage |
---|---|---|
Gender | ||
Male | 168 | 58.5 |
Female | 132 | 41.5 |
Education | ||
Primary | 48 | 16.0 |
High School | 27 | 9.0 |
Undergraduate | 42 | 14.0 |
Master and Above | 150 | 50.0 |
Un-educated | 33 | 11.0 |
Locality | ||
Urban | 313 | 78.2 |
Rural | 87 | 21.8 |
Age | ||
18–30 | 152 | 50.7 |
31–45 | 109 | 36.3 |
46–above | 39 | 13.0 |
Group 1 | Mean | PRR | OK | AT | PNF | AC | Group 2 | Mean | PRR | OK | AT | PNF | AC |
PRR | 2.35 | 1 | PRR | 1.76 | 1 | ||||||||
OK | 3.37 | 0.44 * | 1 | OK | 3.61 | 0.51 * | 1 | ||||||
AT | 3.16 | 0.32 * | 0.37 * | 1 | AT | 3.72 | 0.53 * | 0.65 * | 1 | ||||
PNF | 2.10 | 0.24 * | 0.39 * | 0.41 * | 1 | PNF | 2.39 | 0.49 * | 0.76 * | 0.65 * | 1 | ||
AC | 4.04 | 0.36 * | 0.56 * | 0.21 * | 0.43 * | 1 | AC | 3.92 | 0.42 * | 0.63 * | 0.43 * | 0.68 * | 1 |
Group 3 | Mean | PRR | OK | AT | PNF | AC | Group 4 | Mean | PRR | OK | AT | PNF | AC |
PRR | 2.71 | 1 | PRR | 2.59 | 1 | ||||||||
OK | 2.86 | 0.16 * | 1 | OK | 1.89 | 0.27 * | 1 | ||||||
AT | 2.52 | 0.26 * | 0.23 * | 1 | AT | 1.78 | 0.41 * | 0.65 * | 1 | ||||
PNF | 2.63 | 0.19 * | 0.09 * | 0.13 * | 1 | PNF | 2.45 | 0.32 * | 0.76 * | 0.65 * | 1 | ||
AC | 2.57 | 0.18 * | 0.22 * | 0.19 * | 0.27 * | 1 | AC | 2.21 | 0.24 * | 0.32 * | 0.20 * | 0.14 * | 1 |
Measurement Models | x2/df | GFI | TLI | IFI | CFI | RMSEA |
Group 1 | 1.81 | 0.95 | 0.96 | 0.97 | 0.95 | 0.035 |
Group 2 | 2.03 | 0.91 | 0.91 | 0.92 | 0.93 | 0.030 |
Group 3 | 2.63 | 0.98 | 0.95 | 0.97 | 0.96 | 0.041 |
Group 4 | 2.19 | 0.93 | 0.90 | 0.92 | 0.98 | 0.038 |
Structural Models | x2/df | GFI | TLI | IFI | CFI | RMSEA |
Group 1 | 2.09 | 0.96 | 0.95 | 0.91 | 0.98 | 0.034 |
Group 2 | 1.67 | 0.97 | 0.91 | 0.93 | 0.95 | 0.050 |
Group 3 | 3.41 | 0.98 | 0.98 | 0.90 | 0.94 | 0.032 |
Group 4 | 4.12 | 0.93 | 0.92 | 0.97 | 0.91 | 0.037 |
Items | Group 1 | Group 2 | Group 3 | Group 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α | CR | AVE | W | α | CR | AVE | W | α | CR | AVE | W | α | CR | AVE | W | |
PRR1 | 0.83 | 0.92 | 0.61 | 0.89 | 0.91 | 0.93 | 0.64 | 0.76 | 0.77 | 0.87 | 0.69 | 0.76 | 0.74 | 0.89 | 0.55 | 0.82 |
PRR2 | 0.76 | 0.69 | 0.89 | 0.71 | ||||||||||||
PRR3 | 0.65 | 0.84 | 0.71 | 0.77 | ||||||||||||
PRR4 | 0.81 | 0.77 | 0.74 | 0.64 | ||||||||||||
PRR5 | 0.94 | 0.89 | 0.64 | 0.69 | ||||||||||||
PRR6 | 0.72 | 0.86 | 0.34 * | 0.73 | ||||||||||||
PRR7 | 0.68 | 0.75 | 0.78 | 0.81 | ||||||||||||
PRR8 | 0.73 | 0.83 | 0.63 | 0.72 | ||||||||||||
OK1 | 0.85 | 0.92 | 0.68 | 0.91 | 0.89 | 0.94 | 0.71 | 0.93 | 0.74 | 0.91 | 0.62 | 0.78 | 0.79 | 0.89 | 0.60 | 0.86 |
OK2 | 0.86 | 0.69 | 0.81 | 0.63 | ||||||||||||
OK3 | 0.78 | 0.93 | 0.84 | 0.79 | ||||||||||||
OK4 | 0.81 | 0.86 | 0.88 | 0.82 | ||||||||||||
OK5 | 0.74 | 0.83 | 0.67 | 0.71 | ||||||||||||
OK6 | 0.84 | 0.79 | 0.74 | 0.80 | ||||||||||||
AT1 | 0.83 | 0.87 | 0.69 | 0.90 | 0.93 | 0.90 | 0.72 | 0.92 | 0.71 | 0.83 | 0.63 | 0.82 | 0.76 | 0.86 | 0.64 | 0.85 |
AT2 | 0.65 | 0.84 | 0.77 | 0.73 | ||||||||||||
AT3 | 0.89 | 0.86 | 0.23 * | 0.78 | ||||||||||||
AT4 | 0.85 | 0.77 | 0.79 | 0.84 | ||||||||||||
PNF1 | 0.88 | 0.89 | 0.63 | 0.67 | 0.82 | 0.86 | 0.62 | 0.74 | 0.79 | 0.83 | 0.60 | 0.89 | 0.70 | 0.80 | 0.62 | 0.91 |
PNF2 | 0.82 | 0.71 | 0.68 | 0.76 | ||||||||||||
PNF3 | 0.76 | 0.86 | 0.75 | 0.69 | ||||||||||||
PNF4 | 0.91 | 0.83 | 0.77 | 0.43 * | ||||||||||||
AC1 | 0.86 | 0.89 | 0.72 | 0.82 | 0.92 | 0.90 | 0.79 | 0.92 | 0.73 | 0.79 | 0.56 | 0.71 | 0.80 | 0.84 | 0.67 | 0.89 |
AC2 | 0.84 | 0.81 | 0.69 | 0.77 | ||||||||||||
AC3 | 0.90 | 0.93 | 0.84 | 0.80 |
Direct Influence | PRR←OK | AC←AT |
---|---|---|
Group 1: Environmental message—Expert opinion | 0.22 * | 0.30 * |
Group 2: Health message—Expert opinion | 0.27 * | 0.52 * |
Group 3: Environmental message—no Expert opinion | 0.09 * | 0.17 * |
Group 4: Environmental message—no Expert opinion | 0.07 * | 0.25 * |
Mediation Models | Direct Effect β | Indirect Effect β | Meditation |
---|---|---|---|
Group 1: Environmental message—Expert presence | 0.23 * | 0.36 * | Partial |
Group 2: Health message—Expert presence | 0.34 * | 0.41 * | Partial |
Group 3: Environmental message—Expert Absence | 0.10 * | 0.22 * | Partial |
Group 4: Environmental message—Expert Absence | 0.14 * | 0.17 * | Partial |
Stepwise Moderation | Results |
---|---|
Group 1: Environmental message—Expert presence, Dependent Variables: Acceptance of GMF | |
Step 1: Independent Variables: Attitude | 0.30 * (4.15) |
PNF | −0.19 * (4.87) |
R2 Step 2: Moderator: AT × PNF | 0.39 |
−0.13 * (5.12) | |
R2 | 0.32 |
ΔR2 | 0.07 |
Group 2: Health message—Expert presence, DV: Acceptance of GMF | |
Step 1: Independent Variables: Attitude | 0.52 * (3.24) |
PNF | −0.23 * (3.96) |
R2 Step 2: Moderator: AT × PNF | 0.62 |
−0.11 * (4.45) | |
R2 | 0.47 |
ΔR2 | 0.15 |
Group 3: Environmental message—Expert Absence, DV: Acceptance of GMF | |
Step 1: Independent Variables: Attitude | 0.18 * (6.73) |
PNF | −0.08 * (3.65) |
R2 Step 2: Moderator: AT × PNF | 0.31 |
−0.16 * (5. 94) | |
R2 | 0.21 |
ΔR2 | 0.10 |
Group 4: Health message—Expert Absence, DV: Acceptance of GMF | |
Step 1: Independent Variables: Attitude | 0.25 * (4.15) |
PNF | −0.21 * (4.87) |
R2 Step 2: Moderator: AT × PNF | 0.18 |
−0.24 * (5.192) | |
R2 | 0.14 |
ΔR2 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, S.H.; Zaman, U.; Ferreira, P.; Farías, P. An Experimental Evidence on Public Acceptance of Genetically Modified Food through Advertisement Framing on Health and Environmental Benefits, Objective Knowledge, and Risk Reduction. Int. J. Environ. Res. Public Health 2021, 18, 5264. https://doi.org/10.3390/ijerph18105264
Raza SH, Zaman U, Ferreira P, Farías P. An Experimental Evidence on Public Acceptance of Genetically Modified Food through Advertisement Framing on Health and Environmental Benefits, Objective Knowledge, and Risk Reduction. International Journal of Environmental Research and Public Health. 2021; 18(10):5264. https://doi.org/10.3390/ijerph18105264
Chicago/Turabian StyleRaza, Syed Hassan, Umer Zaman, Paulo Ferreira, and Pablo Farías. 2021. "An Experimental Evidence on Public Acceptance of Genetically Modified Food through Advertisement Framing on Health and Environmental Benefits, Objective Knowledge, and Risk Reduction" International Journal of Environmental Research and Public Health 18, no. 10: 5264. https://doi.org/10.3390/ijerph18105264