Greenspace, Air Pollution, Neighborhood Factors, and Preeclampsia in a Population-Based Case-Control Study in California
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-eclampsia rates in the United States, 1980–2010: Age-period-cohort analysis. BMJ 2013, 247, f6564. [Google Scholar] [CrossRef]
- Mol, W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 2010, 63, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L.; Staff, A.C. IFPA Senior Award Lecture: Making sense of pre-eclampsia—Two placental causes of preeclampsia? Placenta 2014, 35, S20–S25. [Google Scholar] [CrossRef]
- Al-Gubory, K.H. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod. BioMed. Online 2014, 29, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.A.; Lyons, E.; Yang, W.; Stevenson, C.; Stevenson, D.K.; Shaw, G.M. Residential proximity to greenspace and preeclampsia in California. Environ. Epidemiol. 2020, 4, e120. [Google Scholar] [CrossRef] [PubMed]
- Twohig-Bennett, C.; Jones, A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef] [PubMed]
- WHO. Urban Green Spaces and Health; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient air pollution and pregnancy-induced hypertensive disorders: A systematic review and meta-analysis. Hypertension 2014, 64, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Duplaix, M.; Bertrand, M.B.; Lo, E. Environmental noise pollution and risk of preeclampsia. Environ. Pollut. 2018, 239, 599–606. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, S.; Wang, G.; Hong, X.; Mallow, E.B.; Walker, S.O.; Pearson, C.; Heffner, L.; Zuckerman, B.; Wang, X. The combined association of psychosocial stress and chronic hypertension with preeclampsia. Am. J. Obstet. Gynecol. 2013, 209, 438.e1–438.e12. [Google Scholar] [CrossRef]
- Aune, D.; Saugstad, O.D.; Henriksen, T.; Aune, S.T.D.; Saugstad, O.D.; Henriksen, T.; Tonstad, S. Physical activity and the risk of preeclampsia: A systematic review and meta-analysis. Epidemiology 2014, 25, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Herrchen, B.; Gould, J.B.; Nesbitt, T.S. Vital statistics linked birth/infant death and hospital discharge record linkage for epidemiological studies. Comput. Biomed. Res. 1997, 30, 290–305. [Google Scholar] [CrossRef]
- Lyndon, A.; Lee, H.C.; Gilbert, W.M.; Gould, J.B.; Lee, K.A. Maternal morbidity during childbirth hospitalization in California. J. Matern. Fetal Neonatal Med. 2012, 25, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Yang, W.; Roberts, E.M.; Aghaeepour, N.; Mayo, J.A.; Weber, K.A.; Maric, I.; Carmichael, S.L.; Winn, V.D.; Stevenson, D.K.; et al. Residential agricultural pesticide exposures and risks of preeclampsia. Environ. Res. 2018, 164, 546–555. [Google Scholar] [CrossRef]
- Padula, A.M.; Mortimer, K.M.; Tager, I.B.; Hammond, S.K.; Lurmann, F.W.; Yang, W.; Stevenson, D.K.; Shaw, G.M. Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California. Ann. Epidemiol. 2014, 24, 888–895e4. [Google Scholar] [CrossRef]
- Shaw, G.M.; Yang, W.; Roberts, E.M.; Kegley, S.E.; Stevenson, D.K.; Carmichael, S.L.; English, P.B. Residential agricultural pesticide exposures and risks of spontaneous preterm birth. Epidemiology 2017, 29, 8–21. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation; NASA Center for Aerospace Information (CASI): Drive Hanover, MD, USA, 1978. [Google Scholar]
- Gorelic, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Weber Kari, A.; Weia, Y.; Frederickb, L.; Katharinec, H.S.; Shaw Gary, M.; Padula Amy, M. Air Pollution, Maternal Hypertensive Disorders, and Preterm Birth. Environ. Epidemiol. 2019, 3, e062. [Google Scholar] [CrossRef] [PubMed]
- Valeri, L.; Vanderweele, T.J. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychol. Methods. 2013, 18, 137–150. [Google Scholar] [CrossRef]
- VanderWeele, T.J. A unification of mediation and interaction: A 4-way decomposition. Epidemiology 2014, 25, 749–761. [Google Scholar] [CrossRef]
- Hoffimann, E.; Barros, H.; Ribeiro, A.I. Socioeconomic Inequalities in Green Space Quality and Accessibility-Evidence from a Southern European City. Int. J. Environ. Res. Public Health 2017, 14, 916. [Google Scholar] [CrossRef] [PubMed]
- Zupancic, T.; Westmacott, C.; Bulthuis, M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systematic Review; David Suzuki Foundation: Vancouver, BC, Canada, 2015. [Google Scholar]
- Laurent, O.; Wu, J.; Li, L.; Milesi, C. Green spaces and pregnancy outcomes in Southern California. Health Place 2013, 24, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Shay, K.A.; Peled, A.; Crespo, A.V.; Peretz, C.; Amitai, Y.; Linn, S.; Friger, M.; Nieuwenhuijsen, M.J. Green spaces and adverse pregnancy outcomes. Occup. Environ. Med. 2014, 71, 562–569. [Google Scholar] [CrossRef]
- Dadvand, P.; Wright, J.; Martinez, D.; Basagaña, X.; McEachan, R.R.C.; Cirach, M.; Gidlow, C.J.; de Hoogh, K.; Gražulevičienė, R.; Nieuwenhuijsen, M.J. Inequality, green spaces, and pregnant women: Roles of ethnicity and individual and neighbourhood socioeconomic status. Environ. Int. 2014, 71, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ebisu, K.; Holford, T.R.; Bell, M.L. Association between greenness, urbanicity, and birth weight. Sci. Total Environ. 2016, 542, 750–756. [Google Scholar] [CrossRef]
- Casey, J.A.; James, P.; Rudolph, K.E.; Wu, C.; Schwartz, B.S. Greenness and Birth Outcomes in a Range of Pennsylvania Communities. Int. J. Environ. Res. Public Health 2016, 13, 311. [Google Scholar] [CrossRef]
- England, L.; Zhang, J. Smoking and risk of preeclampsia: A systematic review. Front. Biosci. 2007, 12, 2471–2483. [Google Scholar] [CrossRef]
Cases | Controls b | |||
---|---|---|---|---|
Mild | Severe | Superimposed | ||
n = 983 | n = 1043 | n = 256 | n = 75,124 | |
Age (years) | ||||
<20 | 18.3 | 17.1 | 3.5 | 13.6 |
20–24 | 27.4 | 27.0 | 16.0 | 29.7 |
25–29 | 21.8 | 23.6 | 24.6 | 27.7 |
30–34 | 17.9 | 17.2 | 27.0 | 19.1 |
≥35 | 14.6 | 15.2 | 28.9 | 10.0 |
Missing | 0.1 | -- | -- | -- |
Race/ethnicity | ||||
White, non-Hispanic | 29.4 | 26.1 | 29.3 | 30.7 |
US-born Hispanic | 31.7 | 30.9 | 25.8 | 25.4 |
Foreign-born Hispanic | 22.6 | 25.8 | 20.7 | 28.7 |
Black, non-Hispanic | 7.9 | 6.9 | 14.8 | 5.2 |
Other | 7.9 | 9.7 | 8.6 | 9.7 |
Missing | 0.4 | 0.7 | 0.8 | 0.4 |
Education | ||||
Less than high school | 28.0 | 27.6 | 25.0 | 31.2 |
High school | 35.6 | 34.5 | 36.7 | 32.5 |
More than high school | 34.5 | 35.3 | 36.3 | 34.6 |
Missing | 1.9 | 2.6 | 2.0 | 1.7 |
Parity | ||||
1 | 53.1 | 57.2 | 34.4 | 35.1 |
≥2 | 46.9 | 42.6 | 65.6 | 64.8 |
Missing | -- | 0.2 | -- | <0.1 |
Payer type for delivery | ||||
Medi-Cal | 56.1 | 52.0 | 44.9 | 52.8 |
Private | 41.8 | 44.4 | 51.2 | 44.7 |
Other | 1.8 | 3.6 | 3.5 | 2.4 |
Missing | 0.3 | 0.1 | 0.4 | 0.1 |
Season of conception | ||||
Winter (Dec–Feb) | 26.1 | 24.5 | 23.1 | 26.2 |
Spring (March–May) | 25.9 | 23.7 | 23.8 | 24.9 |
Summer (June–Aug) | 23.7 | 27.0 | 23.1 | 23.6 |
Fall (Sep–Nov) | 24.2 | 24.8 | 30.1 | 25.4 |
Income below the federal poverty level (proportion greater than 20%) c | ||||
No | 55.5 | 54.0 | 59.0 | 57.9 |
Yes | 44.5 | 46.0 | 41.0 | 42.1 |
Median household annual income (less than $30,000) c | ||||
No | 57.4 | 56.5 | 60.6 | 60.2 |
Yes | 42.6 | 43.5 | 39.5 | 39.8 |
100 m Buffer (75th %) | 500 m Buffer (75th %) | All Subjects | |
---|---|---|---|
n = 19,320 | n = 19,279 | n = 77,406 | |
Maternal age (years) | |||
<20 | 13.6 | 12.2 | 13.7 |
20–24 | 28.6 | 27.1 | 29.6 |
25–29 | 26.9 | 27.8 | 27.5 |
30–34 | 19.6 | 21.2 | 19.1 |
≥35 | 11.4 | 11.7 | 10.2 |
Maternal race/ethnicity | |||
White, non-Hispanic | 34.3 | 35.6 | 30.6 |
US-born Hispanic | 24.2 | 22.6 | 25.5 |
Foreign-born Hispanic | 28.6 | 28.2 | 28.6 |
Black, non-Hispanic | 4.3 | 4.1 | 5.3 |
Other | 8.1 | 9.0 | 9.7 |
Missing | 0.5 | 0.5 | 0.4 |
Maternal education | |||
Less than high school | 31.0 | 28.7 | 31.1 |
High school | 31.9 | 31.4 | 32.6 |
More than high school | 36.0 | 38.6 | 34.6 |
Missing | 1.0 | 1.3 | 1.7 |
Parity | |||
1 | 36.3 | 35.7 | 35.7 |
≥2 | 63.7 | 64.3 | 64.3 |
Missing | <0.1 | <0.1 | <0.1 |
Payer type for delivery | |||
Medi-Cal | 50.3 | 46.6 | 52.8 |
Private | 47.0 | 50.9 | 44.7 |
Other | 2.6 | 2.4 | 2.4 |
Missing | <0.1 | 0.1 | 0.1 |
Season of conception | |||
Winter (Dec–Feb) | 26.3 | 25.8 | 26.1 |
Spring (March–May) | 24.4 | 24.7 | 24.8 |
Summer (June–Aug) | 23.9 | 24.0 | 23.7 |
Fall (Sep–Nov) | 25.4 | 25.5 | 25.4 |
Income below the federal poverty level (proportion greater than 20%) b | |||
No | 64.3 | 70.8 | 57.9 |
Yes | 35.7 | 29.2 | 42.2 |
Median household annual income (less than $30,000) b | |||
No | 65.9 | 73.3 | 60.1 |
Yes | 34.1 | 26.7 | 39.9 |
Mild Preeclampsia | Severe Preeclampsia | Superimposed Preeclampsia | |
---|---|---|---|
aOR (95% CI) | |||
100 m Buffer (>75% vs. ≤25%) | 0.83 (0.69,1.00) | 1.04 (0.87,1.24) | 0.86 (0.60,1.22) |
500 m Buffer (>75% vs. ≤25%) | 0.82 (0.69,0.99) | 0.98 (0.82,1.17) | 0.56 (0.40,0.80) |
CO (>75% vs. ≤75%) | 1.06 (0.89,1.25) | 1.10 (0.94,1.30) | 0.93 (0.67,1.30) |
NO2 (>75% vs. ≤75%) | 1.13 (0.97,1.31) | 1.11 (0.96,1.29) | 0.99 (0.74,1.34) |
PM10 (>75% vs. ≤75%) | 1.20 (1.04,1.39) | 0.99 (0.86,1.15) | 1.07 (0.80,1.44) |
PM2.5 (>75% vs. ≤75%) | 1.28 (1.10,1.49) | 1.38 (1.19,1.59) | 1.23 (0.92,1.65) |
Neighborhood Poverty >20% (Yes vs. No) | 1.24 (1.08,1.42) | 1.31 (1.15,1.50) | 1.29 (0.99,1.69) |
Median Income <30 K (Yes vs. No) | 1.25 (1.09,1.43) | 1.29 (1.13,1.47) | 1.32 (1.01,1.73) |
Preeclampsia Phenotype | Adjusted a Odds Ratio (95% Confidence Intervals) | p-Value Interaction | |
---|---|---|---|
High Poverty | Low Poverty | ||
Mild | 0.79 (0.59,1.05) | 0.93 (0.73,1.20) | 0.44 |
Severe | 1.17 (0.91,1.52) | 0.97 (0.75,1.25) | 0.27 |
Superimposed | 0.80 (0.45,1.44) | 0.46 (0.30,0.71) | 0.13 |
Low Income | High Income | ||
Mild | 0.83 (0.62,1.11) | 0.91 (0.71,1.16) | 0.66 |
Severe | 1.07 (0.82,1.40) | 1.06 (0.82,1.36) | 0.89 |
Superimposed | 1.01 (0.57,1.81) | 0.42 (0.27,0.65) | 0.01 |
Neighborhood SES | Preeclampsia Phenotype | Adjusted a Odds Ratio (95% Confidence Intervals) | p-Value Interaction | |
---|---|---|---|---|
PM10 High Exposure | PM10 Low Exposure | |||
Overall | Mild | 1.00 (0.69,1.45) | 0.81 (0.64,1.01) | 0.18 |
Severe | 1.41 (0.98,2.03) | 0.87 (0.71,1.08) | 0.01 | |
Superimposed | 0.51 (0.21,1.23) | 0.59 (0.39,0.89) | 1.00 | |
High Poverty | Mild | 0.87 (0.51,1.49) | 0.76 (0.52,1.09) | 0.52 |
Severe | 1.45 (0.90,2.35) | 1.07 (0.78,1.48) | 0.21 | |
Superimposed | 0.54 (0.16,1.84) | 1.09 (0.51,2.35) | 0.40 | |
Low Poverty | Mild | 1.30 (0.75,2.24) | 0.90 (0.66,1.22) | 0.15 |
Severe | 1.56 (0.87,2.78) | 0.83 (0.62,1.11) | 0.02 | |
Superimposed | 0.56 (0.15,2.05) | 0.41 (0.25,0.67) | 0.54 | |
Low Income | Mild | 0.86 (0.49,1.51) | 0.84 (0.58,1.21) | 0.77 |
Severe | 1.35 (0.82,2.24) | 0.96 (0.69,1.34) | 0.19 | |
Superimposed | 0.47 (0.11,2.06) | 1.32 (0.65,2.68) | 0.27 | |
High Income | Mild | 1.28 (0.76,2.17) | 0.85 (0.63,1.16) | 0.10 |
Severe | 1.75 (1.00,3.06) | 0.90 (0.67,1.21) | 0.01 | |
Superimposed | 0.58 (0.19,1.80) | 0.40 (0.24,0.66) | 0.42 | |
PM2.5 High Exposure | PM2.5 Low Exposure | |||
Overall | Mild | 0.93 (0.65,1.32) | 0.84 (0.67,1.05) | 0.58 |
Severe | 1.17 (0.84,1.64) | 1.01 (0.81,1.25) | 0.28 | |
Superimposed | 0.61 (0.30,1.23) | 0.58 (0.38,0.88) | 0.69 | |
High Poverty | Mild | 1.05 (0.63,1.76) | 0.73 (0.51,1.05) | 0.21 |
Severe | 1.41 (0.90,2.21) | 1.24 (0.89,1.71) | 0.53 | |
Superimposed | 0.86 (0.28,2.63) | 0.87 (0.43,1.78) | 0.89 | |
Low Poverty | Mild | 0.95 (0.57,1.58) | 0.97 (0.72,1.31) | 0.94 |
Severe | 1.30 (0.77,2.18) | 0.92 (0.69,1.24) | 0.17 | |
Superimposed | 0.51 (0.20,1.28) | 0.45 (0.27,0.75) | 0.65 | |
Low Income | Mild | 1.08 (0.64,1.82) | 0.77 (0.53,1.12) | 0.26 |
Severe | 0.97 (0.58,1.62) | 1.23 (0.88,1.71) | 0.62 | |
Superimposed | 0.78 (0.22,2.76) | 1.08 (0.55,2.12) | 0.76 | |
High Income | Mild | 0.96 (0.58,1.58) | 0.94 (0.70,1.27) | 0.98 |
Severe | 1.69 (1.03,2.75) | 0.96 (0.72,1.29) | 0.04 | |
Superimposed | 0.51 (0.22,1.21) | 0.43 (0.26,0.72) | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, K.A.; Yang, W.; Lyons, E.; Stevenson, D.K.; Padula, A.M.; Shaw, G.M. Greenspace, Air Pollution, Neighborhood Factors, and Preeclampsia in a Population-Based Case-Control Study in California. Int. J. Environ. Res. Public Health 2021, 18, 5127. https://doi.org/10.3390/ijerph18105127
Weber KA, Yang W, Lyons E, Stevenson DK, Padula AM, Shaw GM. Greenspace, Air Pollution, Neighborhood Factors, and Preeclampsia in a Population-Based Case-Control Study in California. International Journal of Environmental Research and Public Health. 2021; 18(10):5127. https://doi.org/10.3390/ijerph18105127
Chicago/Turabian StyleWeber, Kari A., Wei Yang, Evan Lyons, David K. Stevenson, Amy M. Padula, and Gary M. Shaw. 2021. "Greenspace, Air Pollution, Neighborhood Factors, and Preeclampsia in a Population-Based Case-Control Study in California" International Journal of Environmental Research and Public Health 18, no. 10: 5127. https://doi.org/10.3390/ijerph18105127
APA StyleWeber, K. A., Yang, W., Lyons, E., Stevenson, D. K., Padula, A. M., & Shaw, G. M. (2021). Greenspace, Air Pollution, Neighborhood Factors, and Preeclampsia in a Population-Based Case-Control Study in California. International Journal of Environmental Research and Public Health, 18(10), 5127. https://doi.org/10.3390/ijerph18105127