Patients’ Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Questionnaire
2.4. Statistical Analysis
3. Results
3.1. Changes in Patients’ Use of Dietary or Herbal Supplements
3.2. The Association between Use of Dietary or Herbal Supplements during Infection with COVID 19 and Subsequent Hospitalization
4. Discussion
4.1. Citrus Fruits
4.2. Vitamin C
4.3. Black Seed
4.4. Peppermint
4.5. Honey
4.6. Ginger
4.7. Turmeric
4.8. Garlic and Onion
4.9. Costus, Anise, and Coffee Peels
4.10. Limitations and Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol. 2020, 49, 717–726. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19-11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 5 April 2021).
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- US Centers for Disease Control and Prevention. Interim Guidance on Duration of Isolation and Precautions for Adults with COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html (accessed on 25 February 2021).
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease. Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed on 25 February 2021).
- Kumar, A.; Singh, R.; Kaur, J.; Pandey, S.; Sharma, V.; Thakur, L.; Sati, S.; Mani, S.; Asthana, S.; Sharma, T.K.; et al. Wuhan to World: The COVID-19 Pandemic. Front. Cell. Infect. Microbiol. 2021, 11, 596201. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- Mallhi, T.H.; Khan, Y.H.; Alotaibi, N.H.; Alzarea, A.I.; Alanazi, A.S.; Qasim, S.; Iqbal, M.S.; Tanveer, N. Drug repurposing for COVID-19: A potential threat of self-medication and controlling measures. Postgrad. Med. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.-C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020, 75, 1564–1581. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Morais, A.H.A.; Aquino, J.S.; da Silva-Maia, J.K.; Vale, S.H.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br. J. Nutr. 2021, 125, 851–862. [Google Scholar] [CrossRef]
- Briguglio, M.; Pregliasco, F.E.; Lombardi, G.; Perazzo, P.; Banfi, G. The malnutritional status of the host as a virulence factor for new Coronavirus SARS-CoV-2. Front. Med. 2020, 7, 146. [Google Scholar] [CrossRef]
- Panyod, S.; Ho, C.-T.; Sheen, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complementary Med. 2020, 10, 420–427. [Google Scholar] [CrossRef]
- Wang, K.; Conlon, M.; Ren, W.; Chen, B.B.; Bączek, T. Natural products as targeted nodulators of the immune system. J. Immunol. Res. 2018, 2018, 7862782. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, J.; Bian, Z.; Zhou, H.; Zhang, Z.; Lin, Z.; Xu, H. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B 2020, 10, 1163–1174. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Banerjee, S.; Srivastava, S.; Giri, A. Possible nutritional approach to cope with COVID-19 in Indian perspective. Adv. Res. J. Med. Clin. Sci. 2020, 6, 207–219. [Google Scholar]
- Wannes, W.A.; Tounsi, M. Can medicinal plants contribute to the cure of Tunisian COVID-19 patients? J. Med. Plants Stud. 2020, 8, 218–226. [Google Scholar] [CrossRef]
- Khalil, A.; Tazeddinova, D. The upshot of polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat. Prod. Bioprospecting 2020, 10, 411–429. [Google Scholar] [CrossRef]
- Babaei, F.; Nassiri-Asl, M.; Hosseinzadeh, H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci. Nutr. 2020, 8, 5215–5227. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef][Green Version]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef][Green Version]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Hamulka, J.; Jeruszka-Bielak, M.; Górnicka, M.; Drywień, M.E.; Zielinska-Pukos, M.A. Dietary supplements during COVID-19 outbreak. Results of Google trends analysis supported by PLifeCOVID-19 online studies. Nutrients 2020, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.Q. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J. Integr. Med. 2020, 18, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.Y.; Gu, S.; Alemi, S.F.; Research Group for Evidence-Based Chinese Medicine. Chinese herbal medicine for COVID-19: Current evidence with systematic review and meta-analysis. J. Integr. Med. 2020, 18, 385–394. [Google Scholar] [CrossRef]
- Shi, M.Y.; Sun, S.Q.; Zhang, W.; Zhang, X.; Xu, G.H.; Chen, X.; Su, Z.J.; Song, X.M.; Liu, L.J.; Zhang, Y.B.; et al. Early therapeutic interventions of traditional Chinese medicine in COVID-19 patients: A retrospective cohort study. J. Integr. Med. 2021. [Google Scholar] [CrossRef]
- Alsayari, A.; Almghaslah, D.; Khaled, A.; Annadurai, S.; Alkhairy, M.A.; Alqahtani, H.A.; Alsayed, B.A.; Alasiri, R.M.; Assiri, A.M. Community pharmacists’ knowledge, attitudes, and practice of herbal medicines in Asir region, Kingdom of Saudi Arabia. Evid. Based Complementary Altern. Med. 2018, 2018, 1568139. [Google Scholar] [CrossRef][Green Version]
- Alkhamaiseh, S.I.; Aljofan, M. Prevalence of use and reported side effects of herbal medicine among adults in Saudi Arabia. Complementary Ther. Med. 2020, 48, 102255. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon-a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef][Green Version]
- Balogun, F.O.; Ashafa, A.O.T. A review of plants used in South African traditional medicine for the management and treatment of hypertension. Planta Med. 2019, 85, 312–334. [Google Scholar] [CrossRef][Green Version]
- Hong, J.Y.; Lee, C.Y.; Lee, M.G.; Kim, Y.S. Effects of dietary antioxidant vitamins on lung functions according to gender and smoking status in Korea: A population-based cross-sectional study. BMJ Open 2018, 8, e020656. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef][Green Version]
- Alyami, H.S.; Orabi, M.A.A.; Aldhabbah, F.M.; Alturki, H.N.; Aburas, W.I.; Alfayez, A.I.; Alharbi, A.S.; Almasuood, R.A.; Alsuhaibani, N.A. Knowledge about COVID-19 and beliefs about and use of herbal products during the COVID-19 pandemic: A cross-sectional study in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1326–1332. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Bazzaz, B.S.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci. 2014, 17, 929–938. [Google Scholar]
- Koshak, A.; Koshak, E.; Heinrich, M. Medicinal benefits of Nigella sativa in bronchial asthma: A literature review. Saudi Pharm. J. 2017, 25, 1130–1136. [Google Scholar] [CrossRef]
- Barakat, E.M.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol. 2013, 19, 2529–2536. [Google Scholar] [CrossRef]
- Koshak, A.E.; Koshak, E.A.; Mobeireek, A.F.; Badawi, M.A.; Wali, S.O.; Malibary, H.M.; Atwah, A.F.; Alhamdan, M.M.; Almalki, R.A.; Madani, T.A. Nigella sativa supplementation to treat symptomatic mild COVID-19: A structured summary of a protocol for a randomised, controlled, clinical trial. Trials 2020, 21, 703. [Google Scholar] [CrossRef]
- Brahmi, F.; Madani, K.; Mohamed, C.; Duez, P. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants-Back to Nature; El-Shemy, H.A., Ed.; InTechOpen: London, UK, 2017; pp. 47–79. [Google Scholar] [CrossRef][Green Version]
- Nayak, P.; Kumar, T.; Gupta, A.K.; Joshi, N.U. Peppermint a medicinal herb and treasure of health: A review. J. Pharm. Phytochem. 2020, 9, 1519–1528. [Google Scholar] [CrossRef]
- Moghaddam, M.F.; Omidbaigi, R.; Pourbaig, V.; Ghaemi, A. Composition and antifungal activity of peppermint (Mentha piperita) essential oil. Iran. J. Pharm. Sci. 2010, 3, 68–69. [Google Scholar] [CrossRef]
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Propolis, bee honey, and their components protect against Coronavirus Disease 2019 (COVID-19): A review of in silico, in vitro, and clinical studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef]
- Rahman, K.; Hussain, A.; Ullah, S.; Ullah, I.; Zai, M. Phytochemical analysis and chemical composition of different branded and unbranded honey samples. Int. J. Microbiol. Res. 2013, 4, 132–137. [Google Scholar] [CrossRef]
- Al-Hatamleh, M.A.I.; Hatmal, M.M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.D.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules 2020, 25, 5017. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Haniadka, R.; Pereira, M.M.; Thilakchand, K.R.; Rao, S.; Arora, R. Radioprotective effects of Zingiber officinale Roscoe (ginger): Past, present and future. Food Funct. 2012, 3, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, S.; Pittler, M.H.; Roufogalis, B.D. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 2005, 12, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Bae, J.; Lee, D.S. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother. Res. 2008, 22, 1446–1449. [Google Scholar] [CrossRef]
- Shariatpanahi, Z.V.; Taleban, F.A.; Mokhtari, M.; Shahbazi, S. Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit. J. Crit. Care 2010, 25, 647–650. [Google Scholar] [CrossRef]
- Kulkarni, R.A.; Deshpande, A.R. Anti-inflammatory and antioxidant effect of ginger in tuberculosis. J. Complementary Integr. Med. 2016, 13, 201–206. [Google Scholar] [CrossRef]
- Gopinath, H.; Karthikeyan, K. Turmeric: A condiment, cosmetic and cure. Indian J. Dermatol. Venereol. Leprol. 2018, 84, 16–21. [Google Scholar] [CrossRef]
- Gupta, H.; Gupta, M.; Bhargava, S. Potential use of turmeric in COVID-19. Clin. Exp. Dermatol. 2020, 45, 902–903. [Google Scholar] [CrossRef]
- Ahmadi, S.; Rajabi, Z.; Vasfi-Marandi, M. Evaluation of the antiviral effects of aqueous extracts of red and yellow onions (Allium Cepa) against avian influenza virus subtype H9N2. Iran. J. Vet. Sci. Technol. 2018, 10, 23–27. [Google Scholar] [CrossRef]
- Dorsch, W.; Ring, J. Anti-inflammatory, anti-thrombotic and antiviral substances from Onions could be an option for the treatment of COVID-19: A hypothesis. J. Bacteriol. Parasitol. 2021, 12, 1000387. [Google Scholar]
- Koca, I.; Tasci, B. Garlic as a functional food. In VII International Symposium on Edible Alliaceae; Acta Horticulturae: Nigde, Turkey, 2016; pp. 139–146. [Google Scholar] [CrossRef]
- Khubber, S.; Hashemifesharaki, R.; Mohammadi, M.; Gharibzahedi, S.M.T. Garlic (Allium sativum L.): A potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr. J. 2020, 19, 124. [Google Scholar] [CrossRef]
- Donma, M.M.; Donma, O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med. Hypotheses 2020, 144, 109934. [Google Scholar] [CrossRef]
- Qureshi, K.; Shafa, A.; Elhassan, G.; Abdallah, E. Evaluation of some biological properties of Saussurea costus crude root extract. Biosci. Biotechnol. Res. Commun. 2017, 10. [Google Scholar] [CrossRef]
- Julianti, T.; Hata, Y.; Zimmermann, S.; Kaiser, M.; Hamburger, M.; Adams, M. Antitrypanosomal sesquiterpene lactones from Saussurea costus. Fitoterapia 2011, 82, 955–959. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Saussurea costus: Botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J. Ethnopharmacol. 2007, 110, 379–390. [Google Scholar] [CrossRef]
- Saif-Al-Islam, M. Saussurea costus may help in the treatment of COVID-19. Sohag Med. J. 2020, 24, 6–17. [Google Scholar] [CrossRef]
- Mosavat, S.H.; Jaberi, A.R.; Sobhani, Z.; Mosaffa-Jahromi, M.; Iraji, A.; Moayedfard, A. Efficacy of Anise (Pimpinella anisum L.) oil for migraine headache: A pilot randomized placebo-controlled clinical trial. J. Ethnopharmacol. 2019, 236, 155–160. [Google Scholar] [CrossRef]
- Besharati-Seidani, A.; Jabbari, A.; Yamini, Y. Headspace solvent microextraction: A very rapid method for identification of volatile components of Iranian Pimpinella anisum seed. Anal. Chim. Acta 2005, 530, 155–161. [Google Scholar] [CrossRef]
- Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall, Sample N = 738 | Nonhospitalized N = 501 | Hospitalized N = 237 | p-Value * |
---|---|---|---|---|
Age, mean (SD) | 36.5 (11.9) | 33.6 (10.2) | 42.4 (12.9) | <0.0001 |
BMI, mean (SD) | 28.4 (7.1) | 27.3 (7.1) | 30.6 (6.8) | <0.0001 |
Gender | - | - | - | - |
Male | 418 (56.6) | 286 (68.4) | 132 (31.6) | 0.7542 |
Female | 320 (43.4) | 215 (67.2) | 105 (32.8) | - |
Nationality | - | - | - | - |
Saudi | 559 (75.7) | 409 (73.2) | 150 (26.8) | 0.0012 |
Non-Saudi | 179 (24.3) | 92 (51.4) | 87 (48.6) | - |
Marital status | - | - | - | - |
Single | 199 (27.0) | 168 (84.4) | 31 (15.6) | 0.0015 |
Married | 500 (67.8) | 312 (62.4) | 188 (37.6) | - |
Divorced | 26 (3.5) | 18 (69.2) | 8 (30.8) | - |
Widow/widower | 13 (1.7) | 3 (23.1) | 10 (76.9) | - |
Dietary or Herbal Supplements | Supplement Consumption before COVID-19 Infection | Supplement Consumption during COVID-19 Infection | Change in Use from before to during COVID-19 Infection | p-Value * | ||
---|---|---|---|---|---|---|
Yes | No | Yes | No | |||
Ginger | 267 (36.2) | 471 (63.8) | 425 (57.6) | 313 (42.4) | 158 (21.4%) | <0.0001 |
Anise | 146 (19.8) | 592 (80.2) | 168 (22.8) | 570 (77.2) | 22 (3.0%) | 0.0482 |
Cumin | 82 (11.1) | 656 (88.9) | 77 (10.4) | 661 (89.6) | −5 (−0.7%) | 0.5529 |
Chamomile | 54 (7.3) | 684 (92.7) | 51 (6.9) | 687 (93.1) | −3 (−0.4%) | 0.6911 |
Peppermint | 260 (35.2) | 478 (64.8) | 161 (21.8) | 577 (78.2) | −99 (−13.4%) | <0.0001 |
Coffee peel | 74 (10.0) | 664 (90.0) | 50 (6.7) | 688 (93.2) | −24 (−3.3%) | 0.0004 |
Lemon/orange | 368 (49.9) | 370 (50.1) | 591 (80.1) | 147 (19.9) | 223 (30.2%) | <0.0001 |
Honey | 320 (43.4) | 418 (56.6) | 524 (71.0) | 214 (29.0) | 204 (27.6%) | <0.0001 |
Black seed | 145 (19.6) | 593 (80.4) | 345 (46.8) | 393 (53.2) | 200 (27.1%) | <0.0001 |
Costus | 17 (2.3) | 721 (97.7) | 115 (15.6) | 623 (84.4) | 98 (13.3%) | <0.0001 |
Garlic/onion | 231 (31.3) | 507 (68.7) | 271 (36.7) | 467 (63.3) | 40 (5.4%) | 0.0078 |
Vitamin C | 360 (48.8) | 378 (51.2) | 505 (68.4) | 233 (31.6) | 145 (19.6%) | <0.0001 |
Vitamin D | 255 (34.6) | 483 (65.4) | 259 (35.1) | 479 (64.9) | 4 (0.5%) | 0.7335 |
Natural Product or Supplement | When Had COVID-19 | |
---|---|---|
Avoided Use of Supplement ‡ | Started Using Supplement | |
Ginger | 43 (16.1) | 201 (42.7) |
Anise | 51 (34.9) | 73 (12.3) |
Cumin | 38 (46.3) | 33 (5.0) |
Chamomile | 30 (55.6) | 27 (4.0) |
Peppermint | 147 (56.5) | 48 (10.0) |
Coffee peel | 35 (47.3) | 11 (1.7) |
Lemon/orange | 40 (10.9) | 263 (71.1) |
Honey | 43 (13.4) | 247 (59.1) |
Black seed | 31 (21.4) | 231 (39.0) |
Costus | 7 (41.2) | 105 (14.6) |
Garlic/onion | 93 (40.3) | 133 (26.2) |
Vitamin C | 16 (4.4) | 161 (42.6) |
Vitamin D | 67 (26.3) | 71 (14.7) |
Natural Product or Supplement | Patient Using Status during Infection | Nonhospitalized (N = 501) | Hospitalized (N = 237) | p-Value * | Odds Ratio (95%CI) † |
---|---|---|---|---|---|
Ginger | Nonuser | 195 (62.3) | 118 (37.7) | 0.0053 | Reference |
User | 306 (72.0) | 119 (28.0) | 1.06 (0.68–1.63) | ||
Anise | Nonuser | 379 (66.5) | 191 (33.5) | 0.1349 | Reference |
User | 122 (72.6) | 46 (27.4) | 1.11 (0.66–1.86) | ||
Cumin | Nonuser | 442 (66.9) | 219 (33.1) | 0.0827 | Reference |
User | 59 (76.6) | 18 (23.4) | 1.08 (0.49–2.36) | ||
Chamomile | Nonuser | 463 (67.4) | 224 (32.6) | 0.2937 | Reference |
User | 38 (74.5) | 13 (25.5) | 1.43 (0.62–3.32) | ||
Peppermint | Nonuser | 376 (65.2) | 201 (34.8) | 0.0027 | Reference |
User | 125 (77.6) | 36 (22.4) | 0.53 (0.31–0.90) | ||
Coffee peel | Nonuser | 466 (67.7) | 222 (32.3) | 0.7402 | Reference |
User | 35 (70.0) | 15 (30.0) | 1.39 (0.61–3.12) | ||
Lemon/orange | Nonuser | 75 (51.0) | 72 (49.0) | <0.0001 | Reference |
User | 426 (72.0) | 165 (28.0) | 0.54 (0.33–0.88) | ||
Honey | Nonuser | 124 (57.9) | 90 (42.1) | 0.0002 | Reference |
User | 377 (72.0) | 147 (28.0) | 1.04 (0.64–1.70) | ||
Black seed | Nonuser | 241 (61.3) | 152 (38.7) | <0.0001 | Reference |
User | 260 (75.4) | 85 (24.6) | 0.66 (0.42–1.05) | ||
Costus | Nonuser | 411 (66.0) | 212 (34.0) | 0.0095 | Reference |
User | 90 (78.3) | 25 (21.7) | 0.61 (0.33–1.12) | ||
Garlic/onion | Nonuser | 312 (66.8) | 155 (33.2) | 0.4108 | Reference |
User | 189 (69.7) | 82 (30.3) | 1.11 (0.70–1.69) | ||
Turmeric | Nonuser | 387 (65.2) | 207 (34.8) | 0.0012 | Reference |
User | 114 (79.2) | 30 (20.8) | 0.59 (0.33–1.06) | ||
Zinc | Nonuser | 355 (65.9) | 184 (34.1) | 0.0527 | Reference |
User | 146 (73.4) | 53 (26.6) | 0.68 (0.41–1.13) | ||
Vitamin C | Nonuser | 138 (59.2) | 95 (40.8) | 0.0006 | Reference |
User | 363 (71.9) | 142 (28.1) | 0.51 (0.33–0.79) | ||
Vitamin D | Nonuser | 336 (70.2) | 143 (29.8) | 0.0737 | Reference |
User | 165 (63.7) | 94 (36.3) | 1.89 (1.20–2.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldwihi, L.A.; Khan, S.I.; Alamri, F.F.; AlRuthia, Y.; Alqahtani, F.; Fantoukh, O.I.; Assiri, A.; Almohammed, O.A. Patients’ Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 5086. https://doi.org/10.3390/ijerph18105086
Aldwihi LA, Khan SI, Alamri FF, AlRuthia Y, Alqahtani F, Fantoukh OI, Assiri A, Almohammed OA. Patients’ Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia. International Journal of Environmental Research and Public Health. 2021; 18(10):5086. https://doi.org/10.3390/ijerph18105086
Chicago/Turabian StyleAldwihi, Leen A., Shahd I. Khan, Faisal F. Alamri, Yazed AlRuthia, Faleh Alqahtani, Omer I. Fantoukh, Ahmed Assiri, and Omar A. Almohammed. 2021. "Patients’ Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia" International Journal of Environmental Research and Public Health 18, no. 10: 5086. https://doi.org/10.3390/ijerph18105086