Acute Effects of Different Postactivation Potentiation Protocols on Traditional Rowing Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Borba, D.A.; Ferreira-Júnior, J.B.; dos Santos, L.A.; do Carmo, M.C.; Coelho, L.G.M. Effect of post-activation potentiation in Athletics: A systematic review. Rev. Bras. De Cineantropometria E Desempenho Hum. 2017, 19, 128–138. [Google Scholar] [CrossRef]
- Doma, K.; Sinclair, W.H.; Hervert, S.R.; Leicht, A.S. Postactivation potentiation of dynamic conditioning contractions on rowing sprint performance. J. Sci. Med. Sport 2016, 19, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Postactivation Potentiation and Athletic Performance. Available online: https://www.researchgate.net/profile/Lee_Brown2/publication/255721697_Postactivation_potentiation_and_athletic_performance/links/54271be50cf26120b7b34878.pdf (accessed on 23 November 2020).
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.; Judelson, D.A.; Brown, L.E.; Coburn, J.W.; Dabbs, N.C. Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J. Strength Cond. Res. 2010, 24, 343–347. [Google Scholar] [CrossRef]
- Seitz, L.; De Villarreal, E.; Haff, G. The Temporal Profile of Postactivation Potentation is related to Strength Level. J. Strength Cond. Res. 2013, 28, 706–715. [Google Scholar] [CrossRef]
- Sformes, J.O.I.E.; Eenan, M.A.K.; Oody, J.E.M.; Ampouras, T.H.M.B. Effect of Different Types of Conditioning Contraction on Upper Body Postactivation Potentiation. J. Strength Cond. Res. 2011, 25, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Okuno, N.; Tricoli, V.; Silva, S.; Bertuzzi, R.; Moreira, A.; Kiss, M. Postactivation Potentiation on Repeated-Sprint Ability in Elite Handball Players. J. Strength Cond. Res. 2013, 27, 662–668. [Google Scholar] [CrossRef]
- Silva, R.A.S.; Silva-Junior, F.L.; Pinheiro, F.A.; Souza, P.F.M.; Boullosa, D.A.; Pires, F.O. Acute prior heavy strength exercise bouts improve the 20-km cycling time trial performance. J Strength Cond Res 2014, 28, 2513–2520. [Google Scholar] [CrossRef]
- Feros, S.A.; Young, W.B.; Rice, A.J.; Talpey, S.W. The effect of including a series of isometric conditioning contractions to the rowing warm-up on 1000-m rowing ergometer time trial performance. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2012, 26, 3326–3334. [Google Scholar] [CrossRef]
- Gee, T.I.; Caplan, N.; Gibbon, K.C.; Howatson, G.; Thompson, K.G. Investigating the effects of typical rowing strength training practices on strength and power development and 2000m rowing performance. J. Hum. Kinet. 2016, 50, 167–177. [Google Scholar] [CrossRef]
- Gallagher, D.; Dipietro, L.; Visek, A.J.; Bancheri, J.M.; Miller, T.A. The effects of concurrent endurance and resistance training on 2000-m rowing ergometer times in collegiate male rowers. J. Strength Cond. Res. 2010, 24, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Cerasola, D.; Russo, G.; Zangla, D.; Traina, M. Mean power during 20 sec all-out test to predict 2000 m rowing ergometer performance in national level young rowers. J. Sports Med. Phys. Fit. 2015, 55, 872–877. [Google Scholar]
- Penichet-Tomás, A.; Pueo, B.; Jiménez-Olmedo, J. Physical performance indicators in traditional rowing championships. J. Sports Med. Phys. Fit. 2019, 59, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Gabarren, M.; González, R.; Sáez, E.; Izquierdo, M. Physiological factors to predict on traditional rowing performance. Eur. J. Appl. Physiol. 2010, 108, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; González, R.; Maldonado-Martín, S.; Pyne, D.B. Warm-up intensity and duration’s effect on traditional rowing time-trial performance. Int. J. Sports Physiol. Perform. 2012, 7, 186–188. [Google Scholar] [CrossRef]
- Arrizabalaga, R.; Aramendi, J.; Samaniego, J.; Gallego, E.; Emparanza, J. ¿Cuál es el “drag factor” del concept 2 que mejor simula el remo en trainera? Arch. De Med. Del Deporte 2007, 24, 245–252. [Google Scholar]
- Badiola, J.J.; Moragón, F.J.; Díaz-Munío, J.J.; Sebastia, N. El entrenamiento en banco fijo: Utilidad del remoergómetro. Deporte Y Act. Física Para Todos 2008, 4, 121–130. [Google Scholar]
- González, J.M. Olympic rowing and traditional rowing: Biomechanical, physiological and nutritional aspects. Arch. De Med. Del Deporte 2014, 31, 51–59. [Google Scholar]
- Cejuela, R.; Pérez-Turpin, J.A.; Cortell, J.M.; Llopis, J.; Chinchilla, J.J. An analysis of performance in long-distance rowing by means of global positioning system technology. Int. J. Comput. Sci. Sport 2008, 7, 59–65. [Google Scholar]
- Penichet-Tomás, A.; Pueo, B. Performance conditional factors in rowing. Retos 2017, 32, 238–240. [Google Scholar] [CrossRef]
- Penichet-Tomas, A.; Pueo, B.; Jimenez-Olmedo, J.M. Relationship between experience and training characteristics with performance in non-Olympic rowing modalities. J. Phys. Educ. Sport 2016, 16, 1273–1277. [Google Scholar]
- Oenneke, J.E.P.L.; Ilson, S.T.M.C.W.; Dward, E.J.O.; Owery, R.Y.A.N.P.L. Meta-Analysis of Post Activation Potentiation and Power: Effects of Conditioning Activity, Volume, Gender, Rest Periods, and Training Status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar]
- Maestu, J.; Jiirimae, J.; Jiirimae, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–618. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, S. Clinical Trials: A Methodologic Perspective, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2005; ISBN 9780471740131. [Google Scholar]
- McNeely, E.; Sandler, D.; Bamel, S. Strength and power goals for competitive rowers. Strength Cond. J. 2005, 27, 10–15. [Google Scholar] [CrossRef]
- Ross, W.D.; Marfell-Jones, M.J. Kinanthropometry. In Physiological Testing of Elite Athlete; Human Kinetics Publishers Inc.: London, UK, 1911; pp. 223–308. [Google Scholar]
- Akça, F. Prediction of rowing ergometer performance from functional anaerobic power, strength and anthropometric components. J. Hum. Kinet. 2014, 41, 133–142. [Google Scholar] [CrossRef]
- Becerra, M.O.; Espina-Agulló, J.J.; Pueo, B.; Jiménez-Olmedo, J.M.; Penichet-Tomás, A.; Sellés-Pérez, S. Anthropometric profile and performance indicators in female elite beach handball players. J. Phys. Educ. Sport 2018, 18, 1155–1160. [Google Scholar] [CrossRef]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Chatzopoulos, D.; Michailidis, C.; Giannakos, A.; Alexiou, K.; Patikas, D.; Antonopoulos, C.; Kotzamandis, C. Postactivation Potentation Effects After Heavy Resistance Exercise on Runing Speed. Strength Cond. 2004, 18, 777–781. [Google Scholar]
- de Oliveira, J.J.; Crisp, A.H.; Reis, C.G.; de Souza, A.; Baganha, R.J.; Verlengia, R. Effect of postactivation potentiation on short sprint performance: A systematic review and meta-analysis. Asian J. Sports Med. 2017, 8, e14566. [Google Scholar] [CrossRef]
- Gołas, A.; Wilk, M.; Stastny, P.; Maszczyk, A.; Pajerska, K.; Zajac, A. Optimizing half squat postactivation potential load in squat jump training for eliciting relative maximal power in ski jumpers. J. Strength Cond. Res. 2017, 31, 3010–3017. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Medicine 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, G.L.; Voth, E.J. Heart rate recovery from exercise as an index of both parasympathetic and sympathetic activity. Faseb J. 2002, 16, A1142. [Google Scholar]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does Tempo of Resistance Exercise Impact Training Volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
Mean ± SD | 95% CI | |
---|---|---|
Body height (cm) | 181.6 ± 5.8 | 178.1–185.0 |
Body mass (kg) | 76.1 ± 4.4 | 73.5–78.7 |
BMI (kg/m2) | 23.1 ± 1.4 | 22.3–23.9 |
Fat mass (%) | 10.5 ± 2.0 | 9.3–11.5 |
Muscle mass (%) | 46.5 ± 2.0 | 45.3–47.7 |
PAP MCC | PAP MSC | p | 95% CI | Effect Size | ||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | d | Size | |||
Wmean (W) | 554.3 ± 30.5 | 514.5 ± 48.9 | 0.034 * | 4.6–96.7 | 0.98 | Extremely large |
Wmax (W) | 621.4 ± 54.9 | 582.8 ± 48.7 | 0.080 | −6.9–106.0 | 0.74 | Very large |
W1stroke (W) | 251.4 ± 63.0 | 211.0 ± 25.2 | 0.085 | −11.0–133.0 | 0.84 | Very large |
W3strokes (W) | 470.2 ± 64.3 | 392.5 ± 70.2 | 0.019 * | 18.5–171.0 | 1.15 | Extremely large |
W5strokes (W) | 600.4 ± 43.7 | 562.0 ± 40.9 | 0.036 * | 4.1–102.8 | 0.91 | Extremely large |
Strokes (n) | 17.2 ± 1.6 | 15.2 ± 1.5 | 0.049 * | 0.0–3.7 | 1.29 | Extremely large |
Ratio (stroke/min) | 49.9 ± 4.4 | 44.8 ± 4.5 | 0.046 * | 0.1–11.5 | 1.15 | Extremely large |
HRmean (bpm) | 118.5 ± 9.1 | 101.2 ± 14.9 | 0.050 | 0.0–34.7 | 1.40 | Extremely large |
HRmax (bpm) | 129.8 ± 11.9 | 115.3 ± 23.4 | 0.225 | −10.9–38.9 | 0.78 | Very large |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penichet-Tomas, A.; Jimenez-Olmedo, J.M.; Serra Torregrosa, L.; Pueo, B. Acute Effects of Different Postactivation Potentiation Protocols on Traditional Rowing Performance. Int. J. Environ. Res. Public Health 2021, 18, 80. https://doi.org/10.3390/ijerph18010080
Penichet-Tomas A, Jimenez-Olmedo JM, Serra Torregrosa L, Pueo B. Acute Effects of Different Postactivation Potentiation Protocols on Traditional Rowing Performance. International Journal of Environmental Research and Public Health. 2021; 18(1):80. https://doi.org/10.3390/ijerph18010080
Chicago/Turabian StylePenichet-Tomas, Alfonso, Jose M. Jimenez-Olmedo, Luis Serra Torregrosa, and Basilio Pueo. 2021. "Acute Effects of Different Postactivation Potentiation Protocols on Traditional Rowing Performance" International Journal of Environmental Research and Public Health 18, no. 1: 80. https://doi.org/10.3390/ijerph18010080
APA StylePenichet-Tomas, A., Jimenez-Olmedo, J. M., Serra Torregrosa, L., & Pueo, B. (2021). Acute Effects of Different Postactivation Potentiation Protocols on Traditional Rowing Performance. International Journal of Environmental Research and Public Health, 18(1), 80. https://doi.org/10.3390/ijerph18010080