VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis
Abstract
1. Introduction
2. Materials and Methods
Subjects
3. Genotyping
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, C.M.; Hsu, Y.W.; Wong, H.S.; Wei, J.C.; Liu, X.; Liao, H.T.; Chang, W.C. Characterization of T-Cell Receptor Repertoire in Patients with Rheumatoid Arthritis Receiving Biologic Therapies. Dis. Markers 2019, 2364943. [Google Scholar] [CrossRef] [PubMed]
- Kailashiya, V.; Singh, U.; Rana, R.; Singh, N.K.; Dash, D.; Kailashiya, J. Regulatory T Cells and Their Association with Serum Markers and Symptoms in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Immunol. Investig. 2019, 48, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.X.; Wu, Y.J.; Zhang, J.; Wei, W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int. Immunopharmacol. 2019, 70, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Pavkova Goldbergova, M.; Lipkova, J.; Pavek, N.; Gatterova, J.; Vasku, A.; Soucek, M.; Nemec, P. RANTES, MCP-1 chemokines and factors describing rheumatoid arthritis. Mol. Immunol. 2012, 52, 273–278. [Google Scholar] [CrossRef]
- Moro-García, M.A.; Mayo, J.C.; Sainz, R.M.; Alonso-Arias, R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front. Immunol. 2018, 9, 339. [Google Scholar] [CrossRef]
- Kondo, Y.; Yokosawa, M.; Kaneko, S.; Furuyama, K.; Segawa, S.; Tsuboi, H.; Matsumoto, I.; Sumida, T. Transcriptional Regulation of CD4+ T Cell Differentiation in Experimentally Induced Arthritis and Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 653–661. [Google Scholar] [CrossRef]
- Li, Y.; Goronzy, J.J.; Weyand, C.M. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp. Gerontol. 2018, 105, 118–127. [Google Scholar] [CrossRef]
- Kang, I.S.; Jang, J.S.; Kim, C. Opposing roles of hematopoietic-specific small GTPase Rac2 and the guanine nucleotide exchange factor Vav1 in osteoclast differentiation. Sci Rep. 2020, 10, 7024. [Google Scholar] [CrossRef]
- An, W.; Mohapatra, B.C.; Zutshi, N.; Bielecki, T.A.; Goez, B.T.; Luan, H.; Iseka, F.; Mushtaq, I.; Storck, M.D.; Band, V.; et al. VAV1-Cre mediated hematopoietic deletion of CBL and CBL-B leads to JMML-like aggressive early-neonatal myeloproliferative disease. Oncotarget 2016, 7, 59006–59016. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, J.; Dou, Z.; Tang, J.; Zhang, C.; Cao, Y. The calponin homology domain of VAV1 associates with calmodulin and is prerequisite to T cell antigen receptor-induced calcium release in Jurkat T lymphocytes. J. Biol. Chem. 2007, 282, 23737–23744. [Google Scholar] [CrossRef]
- Fujikawa, K.; Miletic, A.V.; Alt, F.W.; Faccio, R.; Brown, T.; Hoog, J.; Fredericks, J.; Nishi, S.; Mildiner, S.; Moores, S.L.; et al. VAV1/2/3-null mice define an essential role for VAV family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J. Exp. Med. 2003, 198, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Bustelo, X.R. Vav family exchange factors: An integrated regulatory and functional view. Small Gtpases 2014, 5, e973757. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fdez, S.; Fernández-Nevado, L.; Lorenzo-Martín, L.F.; Bustelo, X.R. Lysine Acetylation Reshapes the Downstream Signaling Landscape of Vav1 in Lymphocytes. Cells 2020, 9, 609. [Google Scholar] [CrossRef] [PubMed]
- Faccio, R.; Teitelbaum, S.L.; Fujikawa, K.; Chappel, J.; Zallone, A.; Tybulewicz, V.L.; Ross, F.P.; Swat, W. Vav3 regulates osteoclast function and bone mass. Nat. Med. 2005, 11, 284–290. [Google Scholar] [CrossRef]
- Sauzeau, V.; Sevilla, M.A.; Rivas-Elena, J.V.; de Alava, E.; Montero, M.J.; López-Novoa, J.M.; Bustelo, X.R. Vav3 proto-oncogene deficiency leads to sympathetic hyperactivity and cardiovascular dysfunction. Nat. Med. 2006, 12, 841–845. [Google Scholar] [CrossRef]
- Sauzeau, V.; Jerkic, M.; Lopez-Novoa, J.M.; Bustelo, X.R. Loss of Vav2 proto-oncogene causes tachycardia and cardiovascular disease in mice. Mol. Biol. Cell 2007, 18, 943–952. [Google Scholar] [CrossRef]
- Sauzeau, V.; Horta-Junior, J.A.; Riolobos, A.S.; Fernández, G.; Sevilla, M.A.; López, D.E.; Montero, M.J.; Rico, B.; Bustelo, X.R. Vav3 is involved in GABAergic axon guidance events important for the proper function of brainstem neurons controlling cardiovascular, respiratory, and renal parameters. Mol. Biol. Cell 2010, 21, 4251–4263. [Google Scholar] [CrossRef]
- Guerreiro-Cacais, A.O.; Norin, U.; Gyllenberg, A.; Berglund, R.; Beyeen, A.D.; Rheumatoid Arthritis Consortium International (RACI); Petit-Teixeira, E.; Cornélis, F.; Saoudi, A.; Fournié, G.J.; et al. VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes Immun. 2017, 18, 48–56. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Jagodic, M.; Colacios, C.; Nohra, R.; Dejean, A.S.; Beyeen, A.D.; Khademi, M.; Casemayou, A.; Lamouroux, L.; Duthoit, C.; Papapietro, O.; et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci. Transl. Med. 2009, 1, 10ra21. [Google Scholar] [CrossRef]
- Marinari, B.; Costanzo, A.; Viola, A.; Michel, F.; Mangino, G.; Acuto, O.; Levrero, M.; Piccolella, E.; Tuosto, L. VAV cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen activated kinase kinase 1. Eur. J. Immunol. 2000, 32, 447–456. [Google Scholar] [CrossRef]
- Raab, M.; Pfister, S.; Rudd, C.E. CD28 signaling via VAV/SLP-76 adaptors: Regulation of cytokine transcription independent of TCR ligation. Immunity 2001, 15, 921–933. [Google Scholar] [CrossRef]
- Yu, H.; Leitenberg, D.; Li, B.; Flavell, R.A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med. 2001, 194, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yu, H.; Zheng, W.; Voll, R.; Na, S.; Roberts, A.W.; Williams, D.A.; Davis, R.J.; Ghosh, S.; Flavell, R.A. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Science 2000, 288, 2219–2222. [Google Scholar] [CrossRef]
- Boise, L.H.; Minn, A.J.; Noel, P.J.; June, C.H.; Accavitti, M.A.; Lindsten, T.; Thompson, C.B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995, 3, 87–98. [Google Scholar] [CrossRef]
- Khoruts, A.; Mondino, A.; Pape, K.A.; Reiner, S.L.; Jenkins, M.K. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J. Exp. Med. 1998, 187, 225–236. [Google Scholar] [CrossRef]
- Harding, F.A.; McArthur, J.G.; Gross, J.A.; Raulet, D.H.; Allison, J.P. CD28- mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992, 356, 607–609. [Google Scholar] [CrossRef]
- Tan, P.; Anasetti, C.; Hansen, J.A.; Melrose, J.; Brunvand, M.; Bradshaw, J.; Ledbetter, J.A.; Linsley, P.S. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J. Exp. Med. 1993, 177, 165–173. [Google Scholar] [CrossRef]
- Miletic, A.V.; Sakata-Sogawa, K.; Hiroshima, M.; Hamann, M.J.; Gomez, T.S.; Ota, N.; Kloeppel, T.; Kanagawa, O.; Tokunaga, M.; Billadeau, D.D.; et al. VAV1 acidic region tyrosine 174 is required for the formation of T cell receptor-induced microclusters and is essential in T cell development and activation. Biol. Chem. 2006, 281, 38257–38265. [Google Scholar] [CrossRef]
- Kim, C.; Marchal, C.C.; Penninger, J.; Dinauer, M.C. The hemopoietic Rho/Rac guanine nucleotide exchange factor VAV1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J. Immunol. 2003, 171, 4425–4430. [Google Scholar] [CrossRef]
- Ksionda, O.; Saveliev, A.; Köchl, R.; Rapley, J.; Faroudi, M.; Smith-Garvin, J.E.; Wülfing, C.; Rittinger, K.; Carter, T.; Tybulewicz, V.L. Mechanism and function of VAV1 localisation in TCR signalling. J. Cell Sci. 2012, 125, 5302–5314. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, A.; Aloyz, R.; Baker, K.; Dirnhofer, S.; Owens, T.; Sladek, R.; Tzankov, A. VAV-1 expression correlates with NFκB activation and CD40-mediated cell death in diffuse large B-cell lymphoma cell lines. Hematol. Oncol. 2010, 28, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Barreira, M.; Rodríguez-Fdez, S.; Bustelo, X.R. New insights into the VAV1 activation cycle in lymphocytes. Cell Signal. 2018, 45, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Kang, I.S.; Cha, Y.N.; Lee, Z.H.; Dinauer, M.C.; Kim, Y.J.; Kim, C. VAV1 inhibits RANKL-induced osteoclast differentiation and bone resorption. BMB Rep. 2019, 52, 659–664. [Google Scholar] [CrossRef]
Genotype | RA Patients | Control Group | pa | pb | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
VAV1rs2546133 genotype | ||||||||
CC | 366 | 86.73% | 310 | 91.72% | 0.090 | TT + CT vs. CC | 0.035 | 1.69 (1.05–2.73) |
CT | 51 | 12.09% | 26 | 7.69% | TT vs. CT + CC | 0.47 | 2.01 (0.39–10.45) | |
TT | 5 | 1.18% | 2 | 0.59% | TT vs. CC | 0.46 | 2.12 (0.41–10.99) | |
CT vs. CC | 0.05 | 1.66 (1.01–2.73) | ||||||
TT vs. CT | 1.00 | 1.28 (0.23–7.02) | ||||||
VAV1rs2546133 allele | ||||||||
C | 783 | 92.77% | 646 | 95.56% | ||||
T | 61 | 7.23% | 30 | 4.44% | T vs. C | 0.023 | 1.68 (1.07–2.63) | |
VAV1rs2617822 genotype | ||||||||
AA | 332 | 78.67% | 271 | 80.18% | 0.86 | GG + AG vs. AA | 0.65 | 1.10 (0.77–1.56) |
AG | 81 | 19.20% | 61 | 18.04% | GG vs. AG + AA | 0.80 | 1.21 (0.43–3.42) | |
GG | 9 | 2.13% | 6 | 1.78% | GG vs. AA | 0.80 | 1.22 (0.43–3.48) | |
AG vs. AA | 0.71 | 1.08 (0.75–1.57) | ||||||
GG vs. AG | 1.00 | 1.13 (0.38–3.34) | ||||||
VAV1rs2617822 allele | ||||||||
A | 745 | 88.27% | 603 | 89.20% | ||||
G | 99 | 11.73% | 73 | 10.80% | G vs. A | 0.63 | 1.10 (0.80–1.51) |
Haplotype | RA Patients | Control Group | pa | ||
---|---|---|---|---|---|
Counts | Frequencies | Counts | Frequencies | ||
CA | 745 | 0.883 | 602 | 0.893 | 0.52 |
TG | 61 | 0.072 | 28 | 0.042 | 0.01 |
CG | 38 | 0.045 | 44 | 0.065 | 0.08 |
Genotype | Age at Onset (years) | ||
---|---|---|---|
n | Mean ± SD | pa | |
VAV1rs2546133 genotype | |||
CC | 366 | 47.65 ± 13.23 | 0.35 |
CT | 51 | 46.29 ± 13.26 | |
TT | 5 | 40.40 ± 11.10 | |
VAV1rs2617822 genotype | |||
AA | 332 | 47.46 ± 13.29 | 0.047 |
AG | 81 | 48.22 ± 12.94 | |
GG | 9 | 37.56 ± 9.84 |
Genotype | Rheumatoid Factor Positive | Erosive RA | Rheumatoid Factor Positive | Erosive RA | |||||
---|---|---|---|---|---|---|---|---|---|
(%) | pa | (%) | pa | OR (95% CI) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||||||
CC | 74.86% | 0.093 | 79.95% | 0.92 | TT + CT vs. CC | 1.23 (0.62–2.44) | 0.55 | 1.15 (0.56–2.40) | 0.70 |
CT | 82.35% | 82.35% | TT vs. CT + CC | 0.21 (0.04–1.29) | 0.065 | 0.98 (0.11–8.93) | 0.99 | ||
TT | 40.00% | 80.00% | TT vs. CC | 0.22 (0.04–1.36) | 0.076 | 1.00 (0.11–9.11) | 1.00 | ||
CT vs. CC | 1.57 (0.73–3.35) | 0.24 | 1.17 (0.55–2.51) | 0.69 | |||||
TT vs. CT | 0.14 (0.02–0.98) | 0.028 | 0.86 (0.09–8.61) | 0.90 | |||||
VAV1rs2546133 allele | |||||||||
T allele.b | (+): 7.44% | (+): 7.42% | |||||||
(−): 7.43% | (−): 6.63% | T vs. C | 1.00 (0.55–1.84) | 0.99 | 1.13 (0.57–2.22) | 0.72 | |||
VAV1rs2617822 genotype | |||||||||
AA | 75.16% | 0.77 | 80.61% | 0.68 | GG + AG vs. AA | 1.05 (0.61–1.83) | 0.85 | 0.90 (0.51–1.60) | 0.72 |
AG | 77.22% | 77.78% | GG vs. AG + AA | 0.65 (0.16–2.63) | 0.54 | 1.99 (0.25–16.17) | 0.51 | ||
GG | 66.67% | 88.89% | GG vs. AA | 0.66 (0.16–2.70) | 0.56 | 1.92 (0.24–15.67) | 0.53 | ||
AG vs. AA | 1.12 (0.63–2.01) | 0.70 | 0.84 (0.47–1.52) | 0.57 | |||||
GG vs. AG | 0.59 (0.13–2.60) | 0.48 | 2.29 (0.27–19.50) | 0.44 | |||||
VAV1rs2617822 allele | |||||||||
G allele.b | (+): 11.81% | (+): 11.72% | |||||||
(−): 11.88% | (−): 12.05% | G vs. A | 0.99 (0.61–1.62) | 0.98 | 0.97 (0.57–1.64) | 0.91 |
Genotype | Anti-CCP | ||||
---|---|---|---|---|---|
(%) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||
CC | 82.47% | 0.98 | TT + CT vs. CC | 1.03 (0.40–2.67) | 0.96 |
CT | 83.33% | TT vs. CT + CC | 0.84 (0.09–7.75) | 0.88 | |
TT | 80.00% | TT vs. CC | 0.85 (0.09–7.84) | 0.89 | |
CT vs. CC | 1.06 (0.38–2.97) | 0.91 | |||
TT vs. CT | 0.80 (0.07–8.75) | 0.85 | |||
VAV1rs2546133 allele | |||||
T allele.b | (+): 8.73% | ||||
(−): 8.75% | T vs. C | 1.00 (0.42–2.34) | 1.00 | ||
VAV1rs2617822 genotype | |||||
AA | 83.24% | 0.68 | GG + AG vs. AA | 0.82 (0.38–1.78) | 0.62 |
AG | 78.72% | GG vs. AG + AA | 1.72 (0.21–14.18) | 0.61 | |
GG | 88.89% | GG vs. AA | 1.61 (0.19–13.38) | 0.66 | |
AG vs. AA | 0.75 (0.33–1.67) | 0.47 | |||
GG vs. AG | 2.16 (0.24–19.38) | 0.48 | |||
VAV1rs2617822 allele | |||||
G allele.b | (+): 14.02% | ||||
(−): 15.00% | G vs. A | 0.92 (0.47–1.82) | 0.82 |
Genotype | Vasculitis n = 36 | Amyloidosis n = 24 | Sjogren Syndrome n = 9 | Vasculitis | Amyloidosis | Sjogren Syndrome | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | pa | (%) | pa | (%) | pa | OR (95% CI) | pa | OR (95% CI) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||||||||||
CC | 6.28% | <0.0001 | 4.37% | 0.0099 | 2.19% | 0.013 | TT + CT vs. CC | 4.51 (2.13–9.55) | <0.0001 | 3.65 (1.48–8.97) | 0.0029 | 0.81 (0.10–6.63) | 0.85 |
CT | 25.49% | 13.73% | 0.00% | TT vs. CT + CC | 0.00 (−) | 0.49 | 4.28 (0.46–39.88) | 0.16 | 12.78 (1.28–127.52) | 0.0054 | |||
TT | 0.00% | 20.00% | 20.00% | TT vs. CC | 0.00 (−) | 0.56 | 5.47 (0.58–51.78) | 0.10 | 11.19 (1.12–111.65) | 0.010 | |||
CT vs. CC | 5.10 (2.39–10.89) | <0.0001 | 3.48 (1.36–8.93) | 0.0061 | 0.00 (−) | 0.29 | |||||||
TT vs. CT | 0.00 (−) | 0.20 | 1.57 (0.15–16.18) | 0.70 | ∞ (−) | 0.0013 | |||||||
VAV1rs2546133 allele | |||||||||||||
T allele.b | (+): 18.06% | (+): 18.75% | (+): 11.11% | ||||||||||
(−): 6.22% | (−): 6.53% | (−): 7.14% | T vs. C | 3.32 (1.70–6.48) | 0.00021 | 3.30 (1.52–7.18) | 0.0015 | 1.63 (0.36–7.24) | 0.52 | ||||
VAV1rs2617822 genotype | |||||||||||||
AA | 5.72% | <0.0001 | 4.52% | 0.14 | 2.11% | <0.0001 | GG + AG vs. AA | 3.84 (1.90–7.74) | <0.0001 | 2.35 (0.99–5.56) | 0.046 | 1.06 (0.22–5.17) | 0.95 |
AG | 20.99% | 9.88% | 0.00% | GG vs. AG + AA | 0.00 (−) | 0.35 | 2.12 (0.25–17.68) | 0.48 | 16.57 (2.91–94.42) | <0.0001 | |||
GG | 0.00% | 11.11% | 22.22% | GG vs. AA | 0.00 (−) | 0.46 | 2.64 (0.31–22.51) | 0.36 | 13.27 (2.33–75.63) | 0.00020 | |||
AG vs. AA | 4.38 (2.16–8.88) | <0.0001 | 2.32 (0.95–5.67) | 0.059 | 0.00 (−) | 0.19 | |||||||
GG vs. AG | 0.00 (−) | 0.13 | 1.14 (0.13–10.33) | 0.91 | ∞ (−) | <0.0001 | |||||||
VAV1rs2617822 allele | |||||||||||||
G allele.b | (+): 23.61% | (+): 20.83% | (+): 22.22% | ||||||||||
(−): 10.62% | (−): 11.18% | (−): 11.50% | G vs. A | 2.60 (1.44–4.69) | 0.0011 | 2.09 (1.01–4.34) | 0.044 | 2.20 (0.71–6.82) | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, A.; Malinowski, D.; Paradowska-Gorycka, A.; Safranow, K.; Dziedziejko, V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. Int. J. Environ. Res. Public Health 2020, 17, 3214. https://doi.org/10.3390/ijerph17093214
Pawlik A, Malinowski D, Paradowska-Gorycka A, Safranow K, Dziedziejko V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. International Journal of Environmental Research and Public Health. 2020; 17(9):3214. https://doi.org/10.3390/ijerph17093214
Chicago/Turabian StylePawlik, Andrzej, Damian Malinowski, Agnieszka Paradowska-Gorycka, Krzysztof Safranow, and Violetta Dziedziejko. 2020. "VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis" International Journal of Environmental Research and Public Health 17, no. 9: 3214. https://doi.org/10.3390/ijerph17093214
APA StylePawlik, A., Malinowski, D., Paradowska-Gorycka, A., Safranow, K., & Dziedziejko, V. (2020). VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. International Journal of Environmental Research and Public Health, 17(9), 3214. https://doi.org/10.3390/ijerph17093214