Skinfold Thickness Distribution in Recreational Marathon Runners
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salinero, J.J.; Soriano, M.L.; Lara, B.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Abian-Vicen, J.; Gonzalez-Millan, C.; Del Coso, J. Predicting race time in male amateur marathon runners. J. Sports Med. Phys. Fit. 2017, 57, 1169–1177. [Google Scholar]
- McKelvie, S.J.; Valliant, P.M.; Asu, M.E. Physical training and personality factors as predictors of marathon time and training injury. Percept. Mot. Skills 1985, 60, 551–566. [Google Scholar] [CrossRef]
- Tanda, G. Prediction of marathon performance time on the basis of training indices. J. Hum. Sport Exerc. 2011, 6, 511–520. [Google Scholar] [CrossRef]
- Vickers, A.J.; Vertosick, E.A. An empirical study of race times in recreational endurance runners. BMC Sports Sci. Med. Rehabil. 2016, 8, 26. [Google Scholar] [CrossRef]
- Till, E.S.; Armstrong, S.A.; Harris, G.; Maloney, S. Predicting marathon time using exhaustive graded exercise test in marathon runners. J. Strength Cond. Res. 2016, 30, 512–517. [Google Scholar] [CrossRef]
- Tanda, G.; Knechtle, B. Marathon performance in relation to body fat percentage and training indices in recreational male runners. Open Access J. Sports Med. 2013, 4, 141–149. [Google Scholar]
- Vernillo, G.; Schena, F.; Berardelli, C.; Rosa, G.; Galvani, C.; Maggioni, M.; Agnello, L.; Torre, A.L.A. Anthropometric characteristics of top-class Kenyan marathon runners. J. Sports Med. Phys. Fit. 2013, 53, 403–408. [Google Scholar]
- Nikolaidis, P.T.; Knechtle, B. Pacing strategies in the ‘Athens Classic Marathon’: Physiological and psychological aspects. Front. Physiol. 2018, 9, 1539. [Google Scholar] [CrossRef]
- Ashwell, M. Obesity in men and women. Int. J. Obes. 1994, 18, S1–S7. [Google Scholar]
- Clemente-Suarez, V.J.; Nikolaidis, P.T. Use of bioimpedianciometer as predictor of mountain marathon performance. J. Med Syst. 2017, 41, 73. [Google Scholar] [CrossRef]
- Avlonitou, E.; Georgiou, E.; Douskas, C.; Louizi, A. Estimation of body composition in competitive swimmers by means of three different techniques. Int. J. Sports Med. 1997, 18, 363–368. [Google Scholar] [CrossRef]
- Barandun, U.; Knechtle, B.; Knechtle, P.; Klipstein, A.; Rust, C.A.; Rosemann, T.; Lepers, R. Running speed during training and percent body fat predict race time in recreational male marathoners. Open Access J. Sports Med. 2012, 3, 51–58. [Google Scholar]
- Athens Authentic Marathon. Available online: https://www.athensauthenticmarathon.gr/site/index.php/en/results-en/491-results-2017-marathon (accessed on 2 April 2020).
- Hughes, V.A.; Roubenoff, R.; Wood, M.; Frontera, W.R.; Evans, W.J.; Fiatarone Singh, M.A. Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 2004, 80, 475–482. [Google Scholar] [CrossRef]
- Knechtle, B.; Wirth, A.; Knechtle, P.; Rosemann, T.; Rust, C.A.; Bescos, R. A comparison of fat mass and skeletal muscle mass estimation in male ultra-endurance athletes using bioelectrical impedance analysis and different anthropometric methods. Nutr. Hosp. 2011, 26, 1420–1427. [Google Scholar]
- Eston, R.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual. Tests, Procedures and Data: Volume 1: Anthropometry, 3rd ed.; Routledge: London, UK, 2009; pp. 32–35. [Google Scholar]
- Rust, C.A.; Knechtle, B.; Knechtle, P.; Rosemann, T. Comparison of anthropometric and training characteristics between recreational male marathoners and 24-h ultramarathoners. Open Access J. Sports Med. 2012, 3, 121–129. [Google Scholar]
- Knechtle, B.; Knechtle, P.; Rosemann, T.; Senn, O. Sex differences in association of race performance, skin-fold thicknesses, and training variables for recreational half-marathon runners. Percept. Mot. Skills 2010, 111, 653–668. [Google Scholar] [CrossRef]
- Friedrich, M.; Rüst, C.A.; Rosemann, T.; Knechtle, P.; Barandun, U.; Lepers, R.; Knechtle, B. A comparison of anthropometric and training characteristics between female and male half-marathoners and the relationship to race time. Asian J. Sports Med. 2014, 5, 10–20. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary nutrition strategies to optimize performance in distance runners and race walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Podgorski, T.; Kusy, K.; Osinski, W.; Jeszka, J. Relationship between body composition and the level of aerobic and anaerobic capacity in highly trained male rowers. J. Sports Med. Phys. Fit. 2019, 59, 1526–1535. [Google Scholar] [CrossRef]
- Siegel-Tike, P.; Rosales-Soto, G.; Herrera Valenzuela, T.; Duran Aguero, S.; Yanez Sepulveda, R. Body composition parametersand relationship with maximal aerobic power in recreational cyclists. Nutr. Hosp. 2015, 32, 2223–2227. [Google Scholar]
- Barbieri, D.; Zaccagni, L.; Babic, V.; Rakovac, M.; Misigoj-Durakovic, M.; Gualdi-Russo, E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017, 57, 1142–1146. [Google Scholar]
- Durkalec-Michalski, K.; Podgórski, T.; Sokołowski, M.; Jeszka, J. Relationship between body composition indicators and physical capacity of the combat sports athletes. Arch. Budo 2016, 12, 247–256. [Google Scholar]
- Byrd, M.T.; Switalla, J.R.; Eastman, J.E.; Wallace, B.J.; Clasey, J.L.; Bergstrom, H.C. Contributions of body-composition characteristics to critical power and anaerobic work capacity. Int. J. Sports Physiol. Perform. 2018, 13, 189–193. [Google Scholar] [CrossRef]
- Leão, C.; Camões, M.; Clemente, F.M.; Nikolaidis, P.T.; Lima, R.; Bezerra, P.; Rosemann, T.; Knechtle, B. Anthropometric profile of soccer players as a determinant of position specificity and methodological issues of body composition estimation. Int. J. Environ. Res. Public Health 2019, 16, 2386. [Google Scholar] [CrossRef]
- Knechtle, B.; Di Gangi, S.; Rust, C.A.; Nikolaidis, P.T. Performance Differences between the Sexes in the Boston Marathon from 1972 to 2017. J. Strength Cond. Res. 2020, 34, 566–576. [Google Scholar] [CrossRef]
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res. Sports Med. 2020, 28, 121–137. [Google Scholar] [CrossRef]
- Young, H.J.; Southern, W.M.; McCully, K.K. Comparisons of ultrasound-estimated intramuscular fat with fitness and health indicators. Muscle Nerve 2016, 54, 743–749. [Google Scholar] [CrossRef]
Variable | Women (n = 32) | Men (n = 134) | Cohen’s d |
---|---|---|---|
Age (years) | 40.1 ± 9.0 | 44.3 ± 8.8 * | −0.47 |
Anthropometry | |||
Height (cm) | 162.3 ± 6.5 | 176.1 ± 5.8 ** | −2.24 |
Body mass (kg) | 57.7 ± 7.5 | 76.8 ± 9.2 ** | −2.28 |
BMI (kg·m−2) | 21.8 ± 2.2 | 24.7 ± 2.6 ** | −1.20 |
BF (%) | 19.6 ± 4.7 | 17.7 ± 4.0 * | 0.44 |
Skinfold | Women (n = 32) | Men (n = 134) | %Difference | p | Cohen’s d |
---|---|---|---|---|---|
Cheek (mm) | 7.6 ± 1.7 | 8.0 ± 1.9 | −5.5 | 0.250 | −0.22 |
Chin (mm) | 6.8 ± 2.7 | 6.8 ± 2.1 | 0.7 | 0.915 | 0 |
Triceps (mm) | 13.5 ± 4.0 | 8.7 ± 2.9 | 35.8 | <0.001 | 1.37 |
Subscapular (mm) | 13.5 ± 5.3 | 13.6 ± 5.0 | −0.8 | 0.918 | −0.02 |
Pectoral (mm) | 7.7 ± 3.4 | 10.3 ± 5.6 | −34.0 | 0.012 | −0.56 |
Chest II (mm) | 11.5 ± 3.9 | 11.4 ± 4.6 | 0.8 | 0.921 | 0.02 |
Abdomen (mm) | 18.2 ± 6.4 | 22.1 ± 8.4 | −21.3 | 0.016 | −0.52 |
Iliac crest (mm) | 14.9 ± 5.8 | 18.0 ± 7.1 | −20.9 | 0.022 | −0.48 |
Patella (mm) | 13.0 ± 3.4 | 9.9 ± 2.9 | 23.4 | <0.001 | 0.98 |
Proximal calf (mm) | 10.6 ± 3.4 | 7.2 ± 2.5 | 31.7 | <0.001 | 1.14 |
Biceps (mm) | 7.0 ± 3.0 | 5.0 ± 1.9 | 27.9 | <0.001 | 0.80 |
Variable | Performance Group | p | Cohen’s d | |
---|---|---|---|---|
<4:30 h:min (n = 15) | ≥4:30 h:min (n = 17) | |||
Finished marathons (n) | 4.2 ± 4.8 | 2.5 ± 2.1 | 0.199 | 0.46 |
Training days (wk−1) | 4.4 ± 1.7 | 3.8 ± 1.2 | 0.221 | 0.41 |
Training distance (km·wk−1) | 55.2 ± 23.2 | 40.7 ± 20.4 | 0.096 | 0.66 |
BF (%) | 20.7 ± 2.9 | 18.6 ± 5.7 | 0.204 | 0.46 |
Skinfolds | ||||
Cheek (mm) | 8.1 ± 1.7 | 7.2 ± 1.6 | 0.132 | 0.55 |
Chin (mm) | 7.4 ± 2.7 | 6.3 ± 2.6 | 0.250 | 0.42 |
Triceps (mm) | 13.9 ± 2.5 | 13.2 ± 5.0 | 0.660 | 0.18 |
Subscapular (mm) | 13.1 ± 3.8 | 13.8 ± 6.5 | 0.738 | −0.13 |
Pectoral (mm) | 7.5 ± 2.2 | 7.8 ± 4.3 | 0.828 | −0.09 |
Chest II (mm) | 11.1 ± 2.5 | 11.8 ± 5.0 | 0.665 | −0.18 |
Abdomen (mm) | 19.0 ± 4.5 | 17.5 ± 7.8 | 0.875 | 0.24 |
Iliac crest (mm) | 15.1 ± 3.8 | 14.8 ± 7.2 | 0.875 | 0.05 |
Patella (mm) | 13.8 ± 3.0 | 12.2 ± 3.6 | 0.197 | 0.48 |
Proximal calf (mm) | 11.0 ± 3.0 | 10.2 ± 3.7 | 0.530 | 0.24 |
Biceps (mm) | 7.7 ± 3.3 | 6.4 ± 2.6 | 0.231 | 0.44 |
Variable | Performance Group | p | η2 | |||
---|---|---|---|---|---|---|
<3:30 h:min (n = 32) | 3:30–4:00 h:min (n = 33) | 4:00–4:30 h:min (n = 36) | >4:30 h:min (n = 33) | |||
Finished marathons (n) | 7.7 ± 6.2 | 8.9 ± 9.5 | 3.6 ± 2.5 | 2.5 ± 1.6 | <0.001 | 0.182 |
Training days (wk−1) | 5.3 ± 1.2 | 4.5 ± 1.2 | 4.1 ± 0.7 | 3.6 ± 1.1 | <0.001 | 0.261 |
Training distance (km·wk−1) | 68.0 ± 23.7 | 58.2 ± 20.7 | 45.7 ± 12.3 | 40.4 ± 15.8 | <0.001 | 0.254 |
BF (%) | 14.2 ± 3.9 | 18.1 ± 3.6 | 18.0 ± 2.9 | 20.0 ± 3.5 | <0.001 | 0.273 |
Skinfolds | ||||||
Cheek (mm) | 7.1 ± 1.3 | 8.3 ± 2.1 | 7.7 ± 1.6 | 8.9 ± 2.0 | 0.001 | 0.128 |
Chin (mm) | 5.6 ± 1.5 | 7.1 ± 2.4 | 6.6 ± 1.6 | 7.6 ± 2.3 | 0.001 | 0.121 |
Triceps (mm) | 7.4 ± 2.7 | 8.6 ± 2.4 | 8.6 ± 2.8 | 10.0 ± 2.7 | 0.003 | 0.113 |
Subscapular (mm) | 10.9 ± 3.9 | 13.4 ± 5.0 | 13.5 ± 3.8 | 16.5 ± 6.1 | <0.001 | 0.151 |
Pectoral (mm) | 6.4 ± 2.9 | 10.6 ± 5.4 | 9.9 ± 4.3 | 14.1 ± 6.6 | <0.001 | 0.236 |
Chest II (mm) | 8.5 ± 3.2 | 11.5 ± 4.4 | 11.6 ± 4.0 | 13.8 ± 5.2 | <0.001 | 0.160 |
Abdomen (mm) | 15.3 ± 6.9 | 22.9 ± 7.7 | 22.6 ± 6.3 | 27.1 ± 8.3 | <0.001 | 0.241 |
Iliac crest (mm) | 12.5 ± 6.1 | 18.0 ± 6.1 | 18.5 ± 5.6 | 22.7 ± 6.8 | <0.001 | 0.256 |
Patella (mm) | 9.0 ± 2.5 | 9.6 ± 2.5 | 9.7 ± 3.0 | 11.1 ± 3.0 | 0.026 | 0.072 |
Proximal calf (mm) | 6.2 ± 2.4 | 7.3 ± 2.0 | 7.2 ± 2.4 | 7.9 ± 2.8 | 0.050 | 0.061 |
Biceps (mm) | 4.0 ± 1.3 | 5.0 ± 2.1 | 5.1 ± 1.5 | 5.9 ± 2.1 | <0.001 | 0.134 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Skinfold Thickness Distribution in Recreational Marathon Runners. Int. J. Environ. Res. Public Health 2020, 17, 2978. https://doi.org/10.3390/ijerph17092978
Nikolaidis PT, Rosemann T, Knechtle B. Skinfold Thickness Distribution in Recreational Marathon Runners. International Journal of Environmental Research and Public Health. 2020; 17(9):2978. https://doi.org/10.3390/ijerph17092978
Chicago/Turabian StyleNikolaidis, Pantelis Theodoros, Thomas Rosemann, and Beat Knechtle. 2020. "Skinfold Thickness Distribution in Recreational Marathon Runners" International Journal of Environmental Research and Public Health 17, no. 9: 2978. https://doi.org/10.3390/ijerph17092978
APA StyleNikolaidis, P. T., Rosemann, T., & Knechtle, B. (2020). Skinfold Thickness Distribution in Recreational Marathon Runners. International Journal of Environmental Research and Public Health, 17(9), 2978. https://doi.org/10.3390/ijerph17092978