Poor Physical Fitness Performance as a Predictor of General Adiposity in Taiwanese Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Anthropometrics and Obesity Status
2.4. Measures of Health-Related Physical Fitness
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piernas, C.; Wang, D.; Du, S.; Zhang, B.; Wang, Z.; Su, C.; Popkin, B.M. Obesity, non-communicable disease (NCD) risk factors and dietary factors among Chinese school-aged children. Asia Pac. J. Clin. Nutr. 2016, 25, 826–840. [Google Scholar] [PubMed]
- World Health Organization. Obesity and Overweight. 16 February 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 13 April 2020).
- Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011, 378, 815–825. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Stewart, S.T.; Cutler, D.M.; Rosen, A. Forecasting the effects of obesity and smoking on US life expectancy. N. Engl. J. Med. 2009, 361, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Turer, C.B.; Brady, T.M.; de Ferranti, S.D. Obesity, hypertension, and dyslipidemia in childhood are key modifiable antecedents of adult cardiovascular disease. Circulation 2018, 137, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 2017, 71, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.D.; Magnan, R.E.; Hooper, A.E.; Ciccolo, J.T.; Marcus, B.; Hutchison, K.E. Colorado stride (COSTRIDE): Testing genetic and physiological moderators of response to an intervention to increase physical activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 139. [Google Scholar] [CrossRef]
- Herring, M.P.; Sailors, M.H.; Bray, M.S. Genetic factors in exercise adoption, adherence and obesity. Obes. Rev. 2014, 15, 29–39. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T.; Timmons, J.A. Genomics and genetics in the biology of adaption to exercise. Compr. Physiol. 2011, 1, 1603–1648. [Google Scholar]
- Ding, D.; Sallis, J.F.; Conway, T.L.; Saelens, B.E.; Frank, L.D.; Cain, K.L.; Slymen, D.J. Interactive effects of built environment and psychosocial attributes on physical activity: A test of ecological models. Ann. Behav. Med. 2012, 44, 365–374. [Google Scholar] [CrossRef]
- Foster, S.; Hooper, P.; Knuiman, M.; Christian, H.; Bull, F.; Giles-Corti, B. Safe RESIDential environments? A longitudinal analysis of the influence of crime-related safety on walking. Int. J. Behav. Nutr. Phys. Act. 2016, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Marcus, B.H.; Williams, D.M.; Dubbert, P.M.; Sallis, J.F.; King, A.C.; Yancey, A.K.; Franklin, B.A.; Büchner, D.; Daniels, S.R.; Claytor, R.P. Physical activity intervention studies: What we know and what we need to know: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism Subcommittee on Physical Activity); Council on Cardiovascular Disease in the Young; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. Circulation 2006, 114, 2739–2752. [Google Scholar] [PubMed]
- Sherwood, N.E.; Jeffery, R.W. The behavioral determinants of exercise: Implications for physical activity interventions. Annu. Rev. Nutr. 2000, 20, 21–44. [Google Scholar] [CrossRef] [PubMed]
- McGinn, A.P.; Evenson, K.R.; Herring, A.H.; Huston, S.L. The relationship between leisure, walking, and transportation activity with the natural environment. Health Place 2007, 13, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Marcus, B.H.; Dubbert, P.M.; Forsyth, L.H.; McKenzie, T.L.; Stone, E.J.; Dunn, A.L.; Blair, S.N. Physical activity behavior change: Issues in adoption and maintenance. Health Psychol. 2000, 19, 32–41. [Google Scholar] [CrossRef]
- Barlow, C.E.; Kohl, H.W.; Gibbons, L.W.; Blair, S.N. Physical fitness, mortality and obesity. Int. J. Obes. Relat. Metab. Disord. 1995, 19, 41–44. [Google Scholar]
- Lee, C.D.; Blair, S.N.; Jackson, A.S. US weight guidelines: Is it important to consider cardiorespiratory fitness? Int. J. Obes. Relat. Metab. Disord. 1998, 22, 2–7. [Google Scholar]
- Wei, M.; Kampert, J.; Barlow, C.E.; Nichaman, M.Z.; Gibbons, L.W.; Paffenbarger, R.S.; Blair, S.N. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999, 282, 1547–1553. [Google Scholar] [CrossRef]
- Gruberg, L.; Weissman, N.J.; Wakaman, R.; Fuchs, S.; Deible, R.; Pinnow, E.E.; Ahmed, L.M.; Pichard, A.D.; Suddath, W.O.; Satler, L.F.; et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: The obesity paradox? J. Am. Coll. Cardiol. 2002, 39, 578–584. [Google Scholar] [CrossRef]
- McAuley, P.A.; Blair, S.N. Obesity paradoxes. J. Sports Sci. 2011, 29, 773–782. [Google Scholar] [CrossRef]
- Uretsky, S.; Supariwala, A.; Singh, P.; Atluri, P.; Khokhar, S.S.; Koppuravuri, H.K.; Joshi, R.; Mandeva, A.; Rozanski, A. Impact of weight on long-term survival among patients without known coronary artery disease and a normal stress SPECT MPI. J. Nuci. Cardiol. 2010, 17, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Romero-Corral, A.; Montori, V.M.; Somers, V.K.; Korined, J.; Thomas, R.J.; Allison, T.G.; Moodakam, F.; Lopez-Jimenez, F. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: A systematic review of cohort studies. Lancet 2006, 368, 666–678. [Google Scholar] [CrossRef]
- Lee, C.D.; Blair, S.N.; Jackson, A.S. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am. J. Clin. Nutr. 1999, 69, 373–380. [Google Scholar] [CrossRef]
- Strasser, B. Physical activity in obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 2013, 1281, 141–159. [Google Scholar] [CrossRef]
- Brook, C.M.; King, D.S.; Wofford, M.R.; Harrell, T.K. Exercise, insulin resistance, and hypertension: A complex relationship. Metab. Syndr. Relat. Disord. 2005, 3, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Tsai, H.H.; Wang, H.S.; Ling, C.P.; Wu, M.C.; Chen, J.F. Traveling by private motorized vehicle and physical fitness in Taiwanese adults. Int. J. Behav. Med. 2016, 23, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Lin, K.F. Estimation of VO2max: A comparative analysis of post-exercise heart rate and physical fitness index from 3-minute step test. JESF 2007, 5, 118–123. [Google Scholar]
- Health Promotion Administration, Ministry of Health and Welfare. Check Your Body Weight Every Day. Available online: https://www.hpa.gov.tw/Home/Index.aspx (accessed on 15 August 2019).
- American College of Sports Medicine—ACSM. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2006. [Google Scholar]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Absolute reliability of five clinical tests for assessing hamstring flexibility in professional futsal players. J. Sci. Med. Sport. 2012, 15, 142–147. [Google Scholar] [CrossRef]
- Ortega, R.O.; Grandes, G.; Sanchez, A.; Montoya, I.; Torcal, J.; PEPAF Group. Cardiorespiratory fitness and development of abdominal obesity. Prev. Med. 2019, 118, 232–237. [Google Scholar] [CrossRef]
- Brien, S.E.; Craig, C.L.; Katzmarzyk, P.T.; Gauvin, L. Physical activity, cardiorespiratory fitness and body mass index as presictors of substantial weight gain and obesity. Can. J. Public Health 2007, 98, 121–124. [Google Scholar] [CrossRef]
- DiPietro, L.; Kohl, H.W., III; Barlow, C.E.; Blair, S.N. Improvements in cardiorespiratory fitness attenuate age-related weight gain in healthy men and women: The Aerobics Center Longitudinal Study. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.W.; Schubert, C.M.; Wentling, V.J.; Wurzbacher, K.A.; Czerwinski, S.A.; Demerath, E.W.; Siervogel, R.M. Cardiorespiratory fitness during adulthood and CVD risks twenty years later: The FELS longitudinal Study. Med. Sci. Sports Exerc. 2003, 35, S71. [Google Scholar] [CrossRef]
- Shook, R.P.; Hand, G.A.; Paluch, A.E.; Wang, X.; Moran, R.; Hebert, J.R.; Lavie, C.J.; Blair, S.N. Moderate cardiorespiratory fitness is positively associated with resting metabolic rate in young adults. Mayo Clin. Proc. 2014, 89, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Motka, P.K.; Shah, N.S. Abdominal muscle strength & its correlation with the BMI (Body Mass Index)—A survey in medical students. In Proceedings of the 9th WCPT Africa Region Congress, Nairobi, Kenya, 7 June 2012. [Google Scholar]
- Kamyabnia, M.; Jourkesh, M.; Keikha, B.M. Comparison of physical fitness level among normal weight and obese female university students. Ann. Biol. Res. 2011, 2, 126–133. [Google Scholar]
- Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009, 8, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.L.; Addison, O.; Dibble, L.E.; Foreman, K.B.; Morrell, G.; Lastayo, P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J. Aging Res. 2012, 2012, 629637. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Sarcopenic obesity: The confluence of two epidemics. Obes. Res. 2004, 12, 887–888. [Google Scholar] [CrossRef]
- Malina, R.M.; Beunen, G.P.; Classens, A.L.; Lefevre, J.; Vanden Eynde, B.V.; Renson, R.; Vanreusel, B.; Simons, J. Fatness and physical fitness of girls 7 to 17 years. Obes. Res. 1995, 3, 221–231. [Google Scholar] [CrossRef]
- Tokmakidis, S.P.; Kasambalis, A.; Christodoulos, A.D. Fitness levels of Greek primary school children in relationship to overweight and obesity. Eur. J. Pediatr. 2007, 165, 867–874. [Google Scholar] [CrossRef]
Variables | Men (n = 29,166) | Women (n = 30,890) | ||||||
---|---|---|---|---|---|---|---|---|
Obesity (n = 6947) | Overweight (n = 10,141) | Normal Weight (n = 12,078) | p | Obesity (n = 3918) | Overweight (n = 6666) | Normal Weight (n = 20,306) | p | |
Age (years) | 41.28 ± 11.01 | 42.05 ± 11.33 | 38.99 ± 11.88 | < 0.001 * | 45.50 ± 11.71 | 46.21 ± 11.42 | 41.65 ± 11.54 | <0.001 * |
Body weight (kg) | 84.60 ± 7.53 | 73.96 ± 5.95 | 64.45 ± 6.21 | < 0.001 * | 72.75 ± 7.35 | 62.73 ± 5.07 | 53.89 ± 4.97 | <0.001 * |
Height (cm) | 170.22 ± 6.13 | 170.56 ± 6.30 | 171.00 ± 6.42 | < 0.001 * | 156.98 ± 5.87 | 157.38 ± 5.84 | 158.69 ± 5.59 | <0.001 * |
BMI (kg/m2) | 29.18 ± 1.84 | 25.39 ± 0.85 | 22.01 ± 1.40 | < 0.001 * | 29.49 ± 2.17 | 25.29 ± 0.86 | 21.38 ± 1.45 | <0.001 * |
WC (cm) | 94.16 ± 6.42 | 85.99 ± 5.40 | 78.39 ± 5.87 | < 0.001 * | 89.26 ± 7.54 | 80.93 ± 6.02 | 72.59 ± 6.13 | <0.001 * |
HC (cm) | 103.37 ± 5.03 | 97.78 ± 4.31 | 92.91 ± 4.45 | < 0.001 * | 104.00 ± 5.71 | 97.69 ± 4.59 | 91.89 ± 4.60 | <0.001 * |
WHR | 0.91 ± 0.05 | 0.88 ± 0.05 | 0.84 ± 0.05 | < 0.001 * | 0.86 ± 0.06 | 0.83 ± 0.06 | 0.79 ± 0.06 | <0.001 * |
Variables | Men (n = 29,166) | Women (n = 30,890) | ||||||
---|---|---|---|---|---|---|---|---|
Obesity (n = 6947) | Overweight (n = 10,141) | Normal Weight (n = 12,078) | p | Obesity (n = 3918) | Overweight (n = 6666) | Normal Weight (n = 20,306) | p | |
Education level (%) | < 0.001 * | <0.001 * | ||||||
Elementary school or lower | 2.30 | 1.78 | 1.36 | 9.90 | 8.21 | 3.84 | ||
Junior or senior school | 26.73 | 24.80 | 22.01 | 39.49 | 37.69 | 28.85 | ||
College or higher | 70.97 | 73.43 | 76.63 | 50.61 | 54.10 | 67.31 | ||
Income level (%) | <0.001 * | <0.001 * | ||||||
≦20,000 NTD | 14.04 | 12.65 | 16.87 | 33.08 | 30.42 | 24.08 | ||
20,001–40,000 NTD | 34.40 | 33.08 | 35.73 | 45.92 | 44.14 | 47.89 | ||
≧40,001 NTD | 51.56 | 54.27 | 47.40 | 20.99 | 25.44 | 28.03 | ||
Marital status (%) | <0.001 * | <0.001 * | ||||||
Never married | 54.36 | 53.39 | 51.65 | 57.78 | 57.01 | 54.87 | ||
Married | 42.78 | 44.17 | 46.46 | 35.54 | 36.43 | 40.64 | ||
Divorced/separation/widowed | 2.86 | 2.44 | 1.89 | 6.69 | 6.55 | 4.49 | ||
Self-reported health status (%) | <0.001 * | <0.001 * | ||||||
Excellent or good | 53.97 | 64.82 | 64.98 | 51.25 | 59.78 | 61.18 | ||
Fair | 36.09 | 30.09 | 29.92 | 37.95 | 33.11 | 32.88 | ||
Very bad or poor | 9.94 | 5.08 | 5.09 | 10.80 | 7.10 | 5.94 | ||
Smoking status (%) | <0.001 * | 0.005 * | ||||||
Never | 65.82 | 69.92 | 73.48 | 94.52 | 95.84 | 95.88 | ||
Current | 22.67 | 19.22 | 18.09 | 3.85 | 2.88 | 2.95 | ||
Former | 11.50 | 10.85 | 8.44 | 1.63 | 1.28 | 1.17 | ||
Chewing betel nuts | <0.001 * | <0.001 * | ||||||
Never | 86.79 | 90.53 | 92.70 | 97.58 | 98.86 | 99.25 | ||
Current | 5.41 | 3.28 | 2.57 | 2.17 | 0.79 | 0.52 | ||
Former | 7.79 | 6.19 | 4.73 | 0.24 | 0.35 | 0.23 |
Variables | Obesity | Overweight | Normal Weight | p | Tukey’s Post Hoc Test |
---|---|---|---|---|---|
Men | |||||
3-min step test | 55.50 ± 10.16 | 57.65 ± 10.26 | 58.97 ± 10.70 | <0.001 * | NW > OW > OB |
1-min sit-up test | 26.56 ± 10.00 | 28.45 ± 1.00 | 29.93 ± 10.29 | <0.001 * | NW > OW > OB |
Sit-and-reach test | 20.43 ± 10.25 | 21.83 ± 10.52 | 22.05 ± 10.88 | <0.001 * | NW, OW > OB |
Women | |||||
3-min step test | 51.61 ± 13.06 | 54.86 ± 12.02 | 56.97 ± 11.00 | <0.001 * | NW > OW > OB |
1-min sit-up test | 13.65 ± 10.06 | 15.54 ± 10.19 | 19.05 ± 10.36 | <0.001 * | NW > OW > OB |
Sit-and-reach test | 26.29 ± 10.16 | 27.53 ± 10.69 | 27.91 ± 11.25 | <0.001 * | NW > OW > OB |
Variables | Model 1 (Unadjusted) | Model 2 (Adjusted a) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Men | ||||||
3-min step test | ||||||
< 51.14 | 1.367 | 1.267-1.474 | <0.001 * | 1.235 | 1.133-1.346 | <0.001 * |
51.14–56.59 | 1.302 | 1.204-1.408 | <0.001 * | 1.233 | 1.129-1.346 | <0.001 * |
56.60–64.29 | 1.183 | 1.098-1.274 | <0.001 * | 1.106 | 1.017-1.203 | 0.019 * |
>64.29 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p <0.001 * | ||||
1-min sit-up test | ||||||
<23.00 | 1.542 | 1.425-1.670 | <0.001 * | 0.896 | 0.806-0.996 | 0.041 * |
23.00–29.99 | 1.430 | 1.324-1.545 | <0.001 * | 0.962 | 0.877-1.054 | 0.406 |
30.00–36.00 | 1.254 | 1.163-1.353 | <0.001 * | 1.004 | 0.922-1.093 | 0.926 |
>36.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p = 0.030 * | ||||
Sit-and-reach test | ||||||
<15.00 | 0.914 | 0.843-0.990 | 0.027 * | 0.748 | 0.684-0.819 | < 0.001 * |
15.00–21.99 | 1.014 | 0.936-1.097 | 0.740 | 0.887 | 0.811-0.970 | 0.008 * |
22.00–30.00 | 1.032 | 0.957-0.990 | 0.410 | 0.931 | 0.856-1.013 | 0.096 |
>30.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p = 0.017 * | p < 0.001 * | ||||
Women | ||||||
3-min step test | ||||||
<49.73 | 1.605 | 1.482-1.738 | <0.001 * | 1.756 | 1.605–1.921 | <0.001 * |
49.73–55.20 | 1.185 | 1.090-1.288 | <0.001 * | 1.286 | 1.170–1.413 | <0.001 * |
55.21–62.50 | 1.145 | 1.056-1.241 | 0.001 * | 1.174 | 1.072–1.413 | 0.001 * |
>62.50 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p < 0.001 * | ||||
1-min sit-up test | ||||||
<11.00 | 2.637 | 2.419-2.875 | <0.001 * | 1.361 | 1.217–1.521 | <0.001 * |
11.00–18.99 | 1.930 | 1.769-2.105 | <0.001 * | 1.322 | 1.194–1.464 | <0.001 * |
19.00–25.00 | 1.496 | 1.373-1.630 | <0.001 * | 1.207 | 1.097–1.328 | <0.001 * |
>25.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p < 0.001 * | ||||
Sit-and-reach test | ||||||
<20.00 | 0.876 | 0.805-0.953 | 0.002 * | 0.835 | 0.759–0.919 | < 0.001 * |
20.00–27.99 | 0.980 | 0.905-1.062 | 0.629 | 0.927 | 0.847–1.015 | 0.100 |
28.00–35.00 | 1.161 | 1.074-1.256 | <0.001 * | 1.118 | 1.024–1.221 | 0.013 * |
>35.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p < 0.001 * |
Variables | Model 1 (Unadjusted) | Model 2 (Adjusted a) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Men | ||||||
3-min step test | ||||||
<50.56 | 2.340 | 2.147–2.551 | <0.001 * | 1.637 | 1.467–1.827 | <0.001 * |
50.56–56.24 | 1.696 | 1.556–1.850 | <0.001 * | 1.310 | 1.175–1.461 | <0.001 * |
56.25–63.38 | 1.267 | 1.159–1.385 | <0.001 * | 1.140 | 1.020–1.274 | 0.021 * |
>63.38 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p < 0.001 * | ||||
1-min sit-up test | ||||||
<22.00 | 2.482 | 2.264-2.722 | <0.001 * | 1.265 | 1.106-1.448 | < 0.001 * |
22.00–28.99 | 1.914 | 1.750-2.093 | <0.001 * | 1.174 | 1.044-1.321 | 0.007 * |
29.00–35.00 | 1.606 | 1.470-1.754 | <0.001 * | 1.203 | 1.079-1.342 | < 0.001 * |
>35.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p = 0.003 * | ||||
Sit-and-reach test | ||||||
<14.00 | 1.132 | 1.033–1.239 | 0.008 * | 0.795 | 0.708–0.892 | <0.001 * |
14.00–20.99 | 1.273 | 1.164–1.392 | <0.001 * | 1.013 | 0.906–1.133 | 0.823 |
21.00–29.00 | 1.210 | 1.111–1.319 | <0.001 * | 0.999 | 0.898–1.112 | 0.992 |
>29.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p = 0.007 * | p < 0.001 * | ||||
Women | ||||||
3-min step test | ||||||
<49.45 | 2.896 | 2.621–3.200 | <0.001 * | 2.855 | 2.536–3.214 | <0.001 * |
49.45–55.20 | 1.450 | 1.302–1.615 | <0.001 * | 1.538 | 1.355–1.745 | <0.001 * |
55.21–62.07 | 1.105 | 0.988-1.236 | 0.079 | 1.101 | 0.967–1.255 | 0.147 |
>62.07 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p < 0.001 * | ||||
1-min sit-up test | ||||||
<11.00 | 4.125 | 3.680–4.624 | <0.001 * | 2.387 | 2.051–2.778 | <0.001 * |
11.00–18.99 | 2.446 | 2.174–2.752 | <0.001 * | 1.910 | 1.658–2.200 | <0.001 * |
19.00–25.00 | 1.665 | 1.477–1.877 | <0.001 * | 1.459 | 1.272–1.673 | <0.001 * |
>25.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p < 0.001 * | p <0.001 * | ||||
Sit-and-reach test | ||||||
<20.00 | 1.067 | 0.955–1.192 | 0.249 | 0.843 | 0.739–0.960 | 0.010 * |
20.00–27.99 | 1.343 | 1.210–1.492 | < 0.001 * | 1.102 | 0.975–1.246 | 0.120 |
28.00–35.00 | 1.405 | 1.265–1.560 | < 0.001 * | 1.198 | 1.060–1.355 | 0.004 * |
>35.00 | Ref. | — | — | Ref. | — | — |
Test for trend | p = 0.659 | p = 0.002 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-T.; Lee, P.-F.; Lee, T.-S.; Ho, C.-C. Poor Physical Fitness Performance as a Predictor of General Adiposity in Taiwanese Adults. Int. J. Environ. Res. Public Health 2020, 17, 2686. https://doi.org/10.3390/ijerph17082686
Lin Y-T, Lee P-F, Lee T-S, Ho C-C. Poor Physical Fitness Performance as a Predictor of General Adiposity in Taiwanese Adults. International Journal of Environmental Research and Public Health. 2020; 17(8):2686. https://doi.org/10.3390/ijerph17082686
Chicago/Turabian StyleLin, Yi-Tien, Po-Fu Lee, Tian-Shyug Lee, and Chien-Chang Ho. 2020. "Poor Physical Fitness Performance as a Predictor of General Adiposity in Taiwanese Adults" International Journal of Environmental Research and Public Health 17, no. 8: 2686. https://doi.org/10.3390/ijerph17082686
APA StyleLin, Y.-T., Lee, P.-F., Lee, T.-S., & Ho, C.-C. (2020). Poor Physical Fitness Performance as a Predictor of General Adiposity in Taiwanese Adults. International Journal of Environmental Research and Public Health, 17(8), 2686. https://doi.org/10.3390/ijerph17082686