Biological Monitoring of Occupational Exposure to Metals in Electric Steel Foundry Workers and Its Contribution to 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Urine Collection
2.2. Measurement of Urinary Metals
2.3. Measurement of U-PHE, 8-oxodG and Cotinine
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Urinary Metal Levels
3.3. U-PHE and 8-oxodG Levels
3.4. Correlations between Urinary Metals, U-PHE, and 8-oxodG
3.5. Multiple Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Remus, R.; Aguado Monsonet, A.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for Iron and Steel Production; European Union, Joint Research Center: Seville, Spain, 2013. [Google Scholar]
- IARC. A Review of Human Carcinogens. Chemical Agents and Related Occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer (IARC): Lyon, France, 2012; Volume 100F. [Google Scholar]
- Rota, M.; Bosetti, C.; Boccia, S.; Boffetta, P.; La Vecchia, C. Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Arch. Toxicol. 2014, 88, 1479–1490. [Google Scholar] [CrossRef]
- Westberg, H.; Andersson, L.; Bryngelsson, I.L.; Ngo, Y.; Ohlson, C.G. Cancer morbidity and quartz exposure in Swedish iron foundries. Int. Arch. Occup. Environ. Health 2013, 86, 499–507. [Google Scholar] [CrossRef][Green Version]
- Cappelletti, R.; Ceppi, M.; Claudatus, J.; Gennaro, V. Health status of male steel workers at an electric arc furnace (EAF) in Trentino, Italy. J. Occup. Med. Toxicol. 2016, 11, 7. [Google Scholar] [CrossRef][Green Version]
- Soleo, L.; Lovreglio, P.; Panuzzo, L.; D’Errico, M.N.; Basso, A.; Gilberti, M.E.; Drago, I.; Tomasi, C.; Apostoli, P. Health risk assessment of exposure to metals in the workers of the steel foundry and in the general population of Taranto (Italy). G. Ital. Med. Lav Ergon. 2012, 34, 381–391. [Google Scholar] [PubMed]
- Dos Santos, C.R.; da Silva, C.S.; Nascimento, E.S. Assessment of exposure to cadmium, lead, manganese, and nickel in workers from foundries. Toxicol. Ind. Health 2016, 32, 1784–1790. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Corsini, A.; Gilberti, E.; Gabusi, V.; Tagliani, G.; Tomasi, C.; Gandellini, A.; Apostoli, P. Biological monitoring of exposure to carcinogenic metallic elements and polycyclic aromatic hydrocarbons in four secondary metallurgical sectors. G. Ital. Med. Lav. Ergon. 2012, 34, 44–47. [Google Scholar] [PubMed]
- Sciskalska, M.; Zalewska, M.; Grzelak, A.; Milnerowicz, H. The influence of the occupational exposure to heavy metals and tobacco smoke on the selected oxidative stress markers in smelters. Biol. Trace Elem. Res. 2014, 159, 59–68. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Apostoli, P.; Maranelli, G.; Minoia, C.; Massola, A.; Baldi, C.; Marchiori, L. Urinary thallium: Critical problems, reference values and preliminary results of an investigation in workers with suspected industrial exposure. Sci. Total Environ. 1988, 71, 513–518. [Google Scholar] [CrossRef]
- Horng, C.J.; Horng, P.H.; Hsu, J.W.; Tsai, J.L. Simultaneous determination of urinary cadmium, cobalt, lead, and nickel concentrations in steel production workers by differential pulse stripping voltammetry. Arch. Environ. Health 2003, 58, 104–110. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.G.; Jamali, M.K.; Arain, M.B.; Sirajuddin; Kandhro, G.A.; Shah, A.Q.; Baig, J.A. Evaluation of arsenic, cobalt, copper and manganese in biological Samples of Steel mill workers by electrothermal atomic absorption Spectrometry. Toxicol. Ind. Health 2009, 25, 59–69. [Google Scholar] [CrossRef]
- Wang, X.; Jin, P.; Zhou, Q.; Liu, S.; Wang, F.; Xi, S. Metal Biomonitoring and Comparative Assessment in Urine of Workers in Lead-Zinc and Steel-Iron Mining and Smelting. Biol. Trace Elem. Res. 2019, 189, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Caito, S.; Aschner, M. Neurotoxicity of metals. Handb. Clin. Neurol. 2015, 131, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am. Heart J. 2014, 168, 812–822. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pilger, A.; Rüdiger, H.W. 8-Hydroxy-2ʹ-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 2006, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Floyd, R.A.; Watson, J.J.; Wong, P.K.; Altmiller, D.H.; Rickard, R.C. Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radic. Res. Commun. 1986, 1, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, M.; Campo, L.; Polledri, E.; Olgiati, L.; Consonni, D.; Saidane-Mosbahi, D.; Fustinoni, S. Urinary 8-Oxo-7,8-Dihydro-2ʹ-Deoxyguanosine in Tunisian Electric Steel Foundry Workers Exposed to Polycyclic Aromatic Hydrocarbons. Ann. Work Expo. Health 2017, 61, 333–343. [Google Scholar] [CrossRef]
- Campo, L.; Hanchi, M.; Olgiati, L.; Polledri, E.; Consonni, D.; Zrafi, I.; Saidane-Mosbahi, D.; Fustinoni, S. Biological Monitoring of Occupational Exposure to Polycyclic Aromatic Hydrocarbons at an Electric Steel Foundry in Tunisia. Ann. Occup. Hyg. 2016, 60, 700–716. [Google Scholar] [CrossRef][Green Version]
- Campo, L.; Fustinoni, S.; Bertazzi, P. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2011, 401, 625–634. [Google Scholar] [CrossRef]
- Fustinoni, S.; Campo, L.; Polledri, E.; Mercadante, R.; Erspamer, L.; Ranzi, A.; Lauriola, P.; Goldoni, C.A.; Bertazzi, P. A validated method for urinary cotinine quantification used to classify active and environmental tobacco smoke exposure. Curr. Anal. Chem. 2013, 9, 447–456. [Google Scholar] [CrossRef]
- Campo, L.; Polledri, E.; Bechtold, P.; Gatti, G.; Ranzi, A.; Lauriola, P.; Goldoni, C.A.; Bertazzi, P.A.; Fustinoni, S. Determinants of active and environmental exposure to tobacco smoke and upper reference value of urinary cotinine in not exposed individuals. Environ. Res. 2016, 148, 154–163. [Google Scholar] [CrossRef]
- Kroll, M.H.; Chester, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated determination of urinary creatinine without sample diluition: Theory and practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [CrossRef] [PubMed]
- ACGIH. TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Indices; American Conference of Governmental Industrial Hygienists (ACGIH): Cincinnati, OH, USA, 2017. [Google Scholar]
- DFG. List of MAK and BAT Values 2018: Maximum Concentrations and Biological Tolerance Values at the Workplace; Deutsche Forschungsgemeinschaft (DFG): Bonn, Germany, 2018; Volume 54. [Google Scholar]
- RAC. Opinion on Scientific Evaluation of Occupational Exposure Limits for Nickel and Its Compounds; Committee for Risk Assessment (RAC) of the European Chemical Agency (ECHA): Helsinki, Finland, 2018. [Google Scholar]
- SCOEL. Cadmium and Its Organic Compounds: Opinion from the Scientific Committee on Occupational Exposure Limits—SCOEL/OPIN/336; Scientific Committee on Occupational Exposure Limits (SCOEL) of the European Union: Luxembourg, 2017. [Google Scholar]
- Nouioui, M.A.; Araoud, M.; Milliand, M.L.; Bessueille-Barbier, F.; Amira, D.; Ayouni-Derouiche, L.; Hedhili, A. Biomonitoring chronic lead exposure among battery manufacturing workers in Tunisia. Environ. Sci. Pollut. Res. Int. 2019, 26, 7980–7993. [Google Scholar] [CrossRef] [PubMed]
- SIVR. Fourth List of Reference Values for Elements, Organic Compounds and Their Metabolites (Quarta Lista dei Valori di Riferimento per Elementi, Composti Organici e Loro Metabolite). Società Italiana Valori di Riferimento (SIVR): 2017. Available online: www.valoridiriferimento.it (accessed on 20 December 2017).
- Fowler, B.A.; Chou, C.-H.S.J.; Jones, R.L.; Sullivan, D.W.J.; Chen, C.-J. Arsenic. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume II. [Google Scholar]
- Soleo, L.; Lovreglio, P.; Iavicoli, S.; Antelmi, A.; Drago, I.; Basso, A.; Di Lorenzo, L.; Gilberti, M.E.; De Palma, G.; Apostoli, P. Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area. Chemosphere 2008, 73, 291–299. [Google Scholar] [CrossRef]
- Staff, J.F.; Cotton, R.J.; Warren, N.D.; Morton, J. Comparison of urinary thallium levels in non-occupationally exposed people and workers. Int. Arch. Occup. Environ. Health 2014, 87, 275–284. [Google Scholar] [CrossRef][Green Version]
- Ellingsen, D.G.; Chashchin, M.; Berlinger, B.; Fedorov, V.; Chashchin, V.; Thomassen, Y. Biological monitoring of welders’ exposure to chromium, molybdenum, tungsten and vanadium. J. Trace Elem. Med. Biol. 2017, 41, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Nogawa, K.; Nordberg, M. Cadmium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume II. [Google Scholar]
- Skerfving, S.; Bergdahl, I.A. Lead. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume II. [Google Scholar]
- Elinder, C.G.; Kjellström, T.; Lind, B.; Linnman, L.; Piscator, M.; Sundstedt, K. Cadmium exposure from smoking cigarettes: Variations with time and country where purchased. Environ. Res. 1983, 32, 220–227. [Google Scholar] [CrossRef]
- Andreoli, R.; Manini, P.; De Palma, G.; Alinovi, R.; Goldoni, M.; Niessen, W.M.; Mutti, A. Quantitative determination of urinary 8-oxo-7,8-dihydro-2ʹ-deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: Daily concentration profile in healthy volunteers. Biomarkers 2010, 15, 221–231. [Google Scholar] [CrossRef]
- Wang, T.; Feng, W.; Kuang, D.; Deng, Q.; Zhang, W.; Wang, S.; He, M.; Zhang, X.; Wu, T.; Guo, H. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers. Environ. Res. 2015, 140, 405–413. [Google Scholar] [CrossRef]
- Huang, H.B.; Chen, G.W.; Wang, C.J.; Lin, Y.Y.; Liou, S.H.; Lai, C.H.; Wang, S.L. Exposure to heavy metals and polycyclic aromatic hydrocarbons and DNA damage in Taiwanese traffic conductors. Cancer Epidemiol. Biomark. Prev. 2013, 22, 102–108. [Google Scholar] [CrossRef][Green Version]
Metal | All Workers n = 89 | Workers Stratified by Job Titles | P a | p b | |||||
---|---|---|---|---|---|---|---|---|---|
RM-CF n = 33 | SSW n = 29 | MAN n = 12 | GALV n = 7 | QC n = 4 | ADM n = 4 | ||||
Median (5th–95th) | |||||||||
V (µg/L) | 0.85 (0.05–2.40) | 1.20 (0.6–2.87) | 0.67 (0.21–2.78) | 0.58 (0.03–1.97) | 0.10 (0.07–2.27) | 1.33 (0.05–1.49) | 0.61 (0.05–1.78) | 0.044 | |
Cr (µg/L) | 0.75 (0.18–5.51) | 0.84 (0.16–5.51) | 0.57 (0.18–3.22) | 0.50 (0.07–1.82) | 1.00 (0.06–1.76) | 2.30 (0.18–7.01) | 0.84 (0.25–1.95) | 0.198 | |
Mn (µg/L) | 0.6 (0.1–4.1) | 0.6 (0.1–2.8) | 0.5 (0.1–3.3) | 0.5 (0.2–5.0) | 1.1 (0.2–1.7) | 1.6 (0.1–4.1) | 2.4 (0.3–10.3) | 0.301 | |
Co (µg/L) | 0.4 (0.1–1.9) | 0.7 (0.2–4.2) | 0.2 (0.0–0.9) | 0.5 (0.1–1.2) | 0.6 (0.0–1.1) | 0.7 (0.2–2.2) | 0.7 (0.3–32.0) | 0.001 | SSW vs. MAN = 0.002 SSW vs. ADM = 0.010 |
Ni (µg/L) | 2.4 (0.5–6.3) | 3.0 (0.7–6.1) | 2.1 (0.6–8.5) | 2.0 (0.5–5.4) | 1.5 (0.3–3.2) | 3.1 (0.8–6.2) | 3.3 (1.4–7.5) | 0.077 | |
Cu (µg/L) | 25 (5–54) | 29 (10–50) | 11 (5–47) | 23 (4–62) | 25 (2–37) | 36 (7–51) | 41 (16–73) | 0.007 | SSW vs. RM-CF = 0.010 |
Zn (µg/L) | 895 (137–3191) | 1054 (272–3185) | 390 (74–1270) | 1153 (260–3986) | 1533 (24–2750) | 765 (302–3618) | 3848 (862–7179) | <0.001 | SSW vs. MAN = 0.060 SSW vs. ADM = 0.002 SSW vs. RM-CF = 0.003 |
total As (µg/L) | 29 (3–156) | 26 (4–1053) | 30 (2–192) | 51 (9–155) | 48 (2–106) | 27 (9–139) | 41 (13–108) | 0.028 | SSW vs. MAN = 0.026 |
Cd (µg/L) | 1.43 (0.10–4.57) | 1.83 (0.59–6.39) | 0.50 (<0.03–2.60) | 1.85 (0.34–2.80) | 1.88 (0.20–2.78) | 2.15 (0.55–5.08) | 3.23 (1.45–5.83) | <0.001 | SSW vs. MAN = 0.006 SSW vs. RM-CF < 0.001 SSW vs. MAN = 0.006 |
Ba (µg/L) | 3.5 (0.3–17.0) | 5.4(1.6–17.0) | 1.6 (0.2–6.5) | 5.7 (1.0–16.7) | 3.5 (0.2–31.7) | 6.3 (2.1–10.3) | 4.1 (2.0–13.6) | <0.001 | SSW vs. MAN = 0.009 SSW vs. RM-CF < 0.001 |
Tl (µg/L) | 0.4 (0.04–1.1) | 0.5 (0.1–1.5) | 0.1 (0.0–0.4) | 0.6 (0.2–0.9) | 0.5 (0.1–1.0) | 0.7 (0.1–1.0) | 0.6 (0.4–1.2) | <0.001 | SSW vs. MAN < 0.001 SSW vs. GALV = 0.022 SSW vs. RM-CF < 0.001 SSW vs. ADM = 0.004 SSW vs. QC = 0.053 |
Pb (µg/L) | 5.0 (0.8–19.0) | 5.4 (2.0–19.1) | 2.1 (0.4–11.0) | 9.3 (3.0–19.0) | 7.4 (0.6–25.6) | 6.8 (2.9–12.5) | 8.2 (50–29.2) | <0.001 | SSW vs. MAN < 0.001 SSW vs. RM-CF < 0.001 SSW vs. ADM = 0.007 |
Model A | Model B | ||||
---|---|---|---|---|---|
Independent Variables | GMR (95% CI); p Value a | R2adjb; P c | Independent Variables | GMR (95% CI); p Valuea | R2adjb; P c |
V | 0.82 (0.58–1.18); 0.282 | 0.04; 0.155 | V | 0.87 (0.62–1.23); 0.430 | 0.11; 0.017 |
U-PHE | 2.42 (1.28–4.58); 0.007 | ||||
Cr | 1.44 (0.93–2.21); 0.100 | 0.05; 0.087 | Cr | 1.40 (0.46–2.13); 0.110 | 0.13; 0.008 |
U-PHE | 2.44 (1.30–4.57); 0.006 | ||||
Mn | 1.88 (1.25–2.85); 0.003 | 0.12; 0.007 | Mn | 1.61 (1.04–2.50); 0.033 | 0.15; 0.004 |
U-PHE | 1.90 (0.97–3.70); 0.059 | ||||
Co | 1.45 (0.95–2.21); 0.085 | 0.06; 0.079 | Co | 1.37 (0.91–2.07); 0.128 | 0.13; 0.009 |
U-PHE | 2.38 (1.27–4.47); 0.008 | ||||
Ni | 1.36 (0.75–2.43); 0.306 | 0.03; 0.162 | Ni | 1.31 (0.74–2.30); 0.348 | 0.11; 0.016 |
U-PHE | 2.46 (1.30–4.63); 0.006 | ||||
Cu | 1.41 (0.80–2.49); 0.234 | 0.04; 0.141 | Cu | 1.32 (1.32–2.28); 0.323 | 0.11; 0.015 |
U-PHE | 2.42 (1.28–4.57); 0.007 | ||||
Zn | 1.79 (1.16–2.75); 0.009 | 0.10; 0.017 | Zn | 1.61 (1.05–2.48); 0.029 | 0.15; 0.003 |
U-PHE | 2.17 (1.16–4.08); 0.016 | ||||
total As | 1.52 (1.08–2.13); 0.016 | 0.09; 0.025 | As | 1.47 (1.84–2.04); 0.021 | 0.16; 0.003 |
U-PHE | 2.36 (1.28–4.38); 0.007 | ||||
Cd | 1.38 (0.92–2.07); 0.114 | 0.06; 0.080 | Cd | 1.36 (1.84–2.04); 0.121 | 0.12; 0.010 |
U-PHE | 2.35 (1.28–4.38); 0.009 | ||||
Ba | 1.41 (0.96–2.07); 0.081 | 0.06; 0.077 | Ba | 1.45 (1.00–2.09); 0.048 | 0.14; 0.005 |
U-PHE | 2.58 (1.38–4.80); 0.003 | ||||
Tl | 1.82 (1.17–2.84); 0.008 | 0.10; 0.016 | Tl | 1.74 (1.13–2.67); 0.012 | 0.17; 0.002 |
U-PHE | 2.33 (1.26–4.31); 0.008 | ||||
Pb | 1.73 (1.07–2.81); 0.027 | 0.08; 0.037 | Pb | 1.62 (1.01–2.59); 0.046 | 0.14; 0.004 |
U-PHE | 2.32 (1.24–4.34); 0.009 |
Metal | Biomarker | Organization | Sampling Time | Biological Value | Value | % of Samples Above the Biological Value | |
---|---|---|---|---|---|---|---|
Vanadium and its inorganic compounds including vanadium pentaoxide | urinary V | DFG | End of exposure, for long-term exposures: at the end of the shift after several shifts | EKA | Air (mg/m3) | Biomarker (µg/g creatinine) | |
0.025 | 35 | 0 | |||||
0.050 | 70 | 0 | |||||
0.100 | 140 | 0 | |||||
SIVR | - | SIVR | 0.0250–0.855 µg/L | 48 | |||
Chromium (VI), water soluble fume | urinary Cr | ACGIH | End of shift at end of workweek | BEI | 25 µg/L | 0 | |
Increase during shift | BEI | 10 µg/L | 2 | ||||
Chromium and its compounds | DFG | End of shift | BAR | 0.6 µg/L | 63 | ||
SIVR | - | SIVR | 0.050–0.60 µg/L | 63 | |||
Manganese | urinary Mn | SIVR | - | SIVR | 0.040–1.5 µg/L | 15 | |
Cobalt and its compounds | urinary Co | ACGIH | End of shift at end of workweek | BEI | 15 µg/L | 1 | |
DFG | End of exposure, for long term exposure | EKA | Air (mg/m3) | Biomarker (µg/L) | |||
0.010 | 6 | 0 | |||||
0.025 | 15 | 0 | |||||
0.050 | 30 | 1 | |||||
0.100 | 60 | 0 | |||||
0.500 | 300 | 0 | |||||
BLW | 35 | 0 | |||||
BAR | 1.5 | 7 | |||||
SIVR | - | SIVR | 0.077–2.2 | 3 | |||
Nickel (nickel metal, oxide, carbonate, sulfide, sulfidic ores) | urinary Ni | DFG | For long-term exposures: at the end of the shift after several shifts | EKA | Air (mg/m3) | Biomarker (µg/L) | |
0.10 | 15 | 0 | |||||
0.30 | 30 | 0 | |||||
Nickel and its compounds | 0.50 | 45 | 0 | ||||
For long-term exposures: at the end of the shift after several shifts | BAR | 3 µg/L | 42 | ||||
SIVR | - | SIVR | 0.372–4.44 µg/L | 19 | |||
Copper and its inorganic compounds | urinary Cu | DFG | - | BAT | NA | ||
- | BAR | NA | |||||
SIVR | - | SIVR | 5.01–24.0 µg/L | 52 | |||
Zinc | urinary Zn | SIVR | - | LVR | ND-1048 µg/L | 40 | |
Cadmium and its inorganic compounds | urinary Cd | ACGIH | Not critical | BEI | 5 µg/g creatinine | 3 | |
ECHA | Not critical | BLV | 2 µg/g creatinine | 14 | |||
DFG | Not fixed | BLW | NA | ||||
Not fixed | BAR (NS) | 0.8 µg/L | 73 | ||||
SIVR | - | SIVR | 0.100–0.900 µg/L | 69 | |||
Barium compounds, soluble | urinary Ba | DFG | End of shift/ for long-term exposures: at the end of the shift after several shifts | BAR | 10 µg/L | 14 | |
SIVR | - | LVR | ND-6.97 µg/L | 24 | |||
Thallium | urinary Tl | SIVR | - | SIVR | 0.0600–0.759 µg/L | 15 | |
Lead | urinary Pb | SIVR | - | SIVR | 1.170–2.94 µg/L | 72 |
Authors, Year Country | Production Process (Analytical Method) | N | V µg/L | Cr µg/L | Mn µg/L | Co µg/L | Ni µg/L | Cu µg/L | Zn µg/L | As µg/L | Cd µg/L | Ba µg/L | Tl µg/L | Pb µg/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This Study, 2019 Tunisia | Electric steel foundry (ICP-MS) | 89 | 0.85 (0.05–2.40) a | 0.75 (0.18–5.51) a | 0.6 (0.1–4.1) a | 0.4 (0.1–1.9) a | 2.4 (0.5–6.3) a | 25 (5–54) a | 895 (137–3191) a | 29 (3–156) a (total As) | 1.43 (0.10–4.57) a | 3.5 (0.3–17.0) a | 0.4 (0.04–1.1) a | 5.0 (0.8–19.0) a |
Apostoli et al., 1988 Italy [10] | Cast iron foundry cupola furnace (X-ray fluorescence spectrometry) | 21 | - | 0.33 (0.06–1.04) b | ||||||||||
Horng et al., 2003 Taiwan [11] | Steel production plant (Differential pulse Stripping voltammetry) | 63 | - | - | - | 8.18 (3.06–23.30) b | 33.10 (13.90–78.90) b | - | - | - | 9.52 (3.19–22.07) b | - | - | 53.50 (28.90–85.60) b |
Afridi et al., 2009 Pakistan [12] | Steel mill Production (GFAAS) | 56 | - | - | 2.49 ± 0.7 c | 3.56 ± 0.6 c | - | 530 ± 5 c mg/L | - | 7.9 ± 1.8 c | - | - | - | - |
De Palma et al., 2012 Italy [8] | Electric steel foundry (ICP-MS and AAS) | 339 | - | 0.44 (0.06–1.80) a | - | - | 0.90 (0.10–3.39) a | - | - | 6.40 (0.50–16.08) a, (inorganic As) | 0.28 (0.13–0.83) a | - | - | - |
Soleo et al., 2012 Italy [6] | Integrated-cycle steel foundry (ICP-MS and AAS) | 49 | - | 0.10 < 0.10–0.40) d | 0.40 (0.00–1.80) d | 0.50 (0.08–1.20) d | 0.60 (0.20–3.00) d | 16.0 (3.3–51.0) d | 352 (67.0–2626.0) d | 5.0 (0.5–75.0) d, (inorganic As) | 0.40 (<0.006–1.40) d | 2.60 (0.20–12.00) d | - | 1.50 (0.20–9.20) d |
Ściskalska et al., 2014 Poland [9] | Copper foundry (AAS) | 352 | - | S a: 12.76 e*NS a:13.0 e* (inorganic As) | S a: 0.83 e*NSa: 0.56 e* | |||||||||
dos Santos et al., 2015 Brasil [7] | Nonferrous metal foundries (GFAAS) | 178 | - | - | 0.64 (5.64) f | - | 1.8 (3.15) f | - | - | - | 1.27 (4.39)f | - | - | - |
Wang et al., 2019 China [13] | Steel smelting plant (AAS) | 162 | - | - | - | - | 1.18 * (0.005–4.40) d | 6.44 * (0.0045–17.80) d | 0.93 * (0.17–3.15) d | 0.025 * (0.025–1.84) d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campo, L.; Hanchi, M.; Sucato, S.; Consonni, D.; Polledri, E.; Olgiati, L.; Saidane-Mosbahi, D.; Fustinoni, S. Biological Monitoring of Occupational Exposure to Metals in Electric Steel Foundry Workers and Its Contribution to 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Levels. Int. J. Environ. Res. Public Health 2020, 17, 1811. https://doi.org/10.3390/ijerph17061811
Campo L, Hanchi M, Sucato S, Consonni D, Polledri E, Olgiati L, Saidane-Mosbahi D, Fustinoni S. Biological Monitoring of Occupational Exposure to Metals in Electric Steel Foundry Workers and Its Contribution to 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Levels. International Journal of Environmental Research and Public Health. 2020; 17(6):1811. https://doi.org/10.3390/ijerph17061811
Chicago/Turabian StyleCampo, Laura, Mariem Hanchi, Sabrina Sucato, Dario Consonni, Elisa Polledri, Luca Olgiati, Dalila Saidane-Mosbahi, and Silvia Fustinoni. 2020. "Biological Monitoring of Occupational Exposure to Metals in Electric Steel Foundry Workers and Its Contribution to 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Levels" International Journal of Environmental Research and Public Health 17, no. 6: 1811. https://doi.org/10.3390/ijerph17061811