Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study
Abstract
:1. Introduction
2. Research in Context
2.1. Evidence before This Study
2.2. Added Value of This Study
2.3. Implications of All the Available Evidence
3. Methods
3.1. Data Sources
3.2. Data Processing
3.3. Quasi-Experimental Design
3.4. Prediction Model Setting
4. Results
4.1. Description of Statistical Analysis
4.2. National Distribution and Social Characteristics of the Origins of Wuhan’s Floating Population
4.3. Distribution and Social Characteristics of the Origins of Wuhan’s Migrants in Hubei Province
4.4. Prediction of Epidemic Trends within Hubei Province
4.5. Prediction of Epidemic Trends outside Hubei Provinces
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heymann, D.L. Data sharing and outbreaks: Best practice exemplified. Lancet 2020, 395, 469–470. [Google Scholar] [CrossRef] [Green Version]
- Mahase, E. China coronavirus: What do we know so far? BMJ 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Wuhan Municipal Health Commission. The Current Epidemic of Pneumonia in Our City by Wuhan Municipal Health Commission. Available online: http://wjw.wh.gov.cn/front/web/showDetail/2019123108989 (accessed on 25 January 2020).
- WHO. Novel Coronavirus (2019-nCoV) Situation Report-6. Geneva: World Health Organization. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200126-sitrep-6-2019--ncov.pdf?sfvrsn=beaeee0c_4 (accessed on 27 January 2020).
- Ding, X.Y. National Real-Time Epidemic Website. Available online: https://ncov.dxy.cn/ncovh5/view/pneumonia?scene=2&clicktime=1579593095&enterid=1579593095&from=groupmessage&isappinstalled=0 (accessed on 25 January 2020).
- WHO. Novel Coronavirus (2019-nCoV) Situation Report-10. Geneva: World Health Organization. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200130-sitrep-10-ncov.pdf?sfvrsn=d0b2e480_2 (accessed on 31 January 2020).
- Read, J.M.; Jessica, R.E.; Bridgen, J.R.E.; Cummings, D.A.T.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. Medrxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Imai, N.; Cori, A.; Dorigatti, I.; Baguelin, M.; Donnelly, C.A.; Riley, S.; Ferguson, N.M. Report 3: Transmissibility of 2019-nCoV. Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-2019-nCoV-transmissibility.pdf (accessed on 26 January 2020).
- Chen, N.; Zhou, M.; Dong, X.; Qu, J. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.Y.; Wang, W.L.; Li, X.W.; Yang, B.; Song, J.D.; Zhao, X.; Huang, B.Y.; Shi, W.F.; Lu, R.J.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.F.; Liu, J.L.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- The Lancet. Emerging understandings of 2019-nCoV. Lancet 2020, 395, 311. [Google Scholar] [CrossRef] [Green Version]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections-more than just the common cold. JAMA 2020, 323, 707–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.L.; Zhang, W.J.; Lu, Y.; Guo, C.; Guo, Z.M.; Liao, C.H.; Zhang, X.; Zhang, Y.; Han, X.H.; Li, Q.L.; et al. From SARS-CoV to Wuhan 2019-nCoV Outbreak: Similarity of Early Epidemic and Prediction of Future Trends. Biorxiv 2020. [Google Scholar] [CrossRef]
- Munster, V.J.; Koopmans, M.; Koopmans, M.; Doremalen, N.V.; Riel, D.V.; Wit, E.D. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med. 2020, 382, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S. Another decade, another coronavirus. N. Engl. J. Med. 2020, 382, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Imai, N.; Dorigatti, I.; Cori, A.; Riley, S.; Ferguson, N.F. Report 1: Estimating the Potential Total Number of Novel Coronavirus Cases in Wuhan City, China. Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/2019-nCoV-outbreak-report-17-01-2020.pdf (accessed on 23 January 2020).
- Imai, N.; Dorigatti, I.; Cori, A.; Riley, S.; Ferguson, N.F. Report 2: Estimating the Potential Total Number of Novel Coronavirus Cases in Wuhan City, China. Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/2019-nCoV-outbreak-report-22-01-2020.pdf (accessed on 24 January 2020).
- Shen, M.; Peng, Z.; Yanni, X.Y.; Zhang, L. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. Biorxiv 2020. [Google Scholar] [CrossRef]
- Huang, C.L.; Wang, Y.M.; Li, X.W.; Ren, L.L.; Zhao, J.P.; Hu, Y.; Zhang, L.; Fan, G.H.; Xu, J.Y.; Gu, X.Y.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Health Commission of Guangdong Province. Epidemic Situation of the Novel Coronavirus in Guangdong Province Published on 23 January 2020. Available online: http://wsjkw.gd.gov.cn/zwyw_yqxx/content/post_2878571.html (accessed on 25 January 2020).
- Xinhua News Agency. 15 Chinese Medical Workers Confirmed Infected with Coronavirus. Available online: http://www.xinhuanet.com/english/2020-01/21/c_138721955.htm (accessed on 23 January 2020).
- Statistics Bureau of Wuhan Municipality. Wuhan Statistical Communiqué on National Economic and Social Development. Available online: http://www.tjcn.org/tjgb/17hb/35881_3.html (accessed on 22 January 2020).
- China Highlights. The Chinese New Year Travel Rush—The World’s Largest Annual Human Migration. Available online: https://www.chinahighlights.com/travelguide/special-report/chinese-new-year/transportation.htm (accessed on 24 January 2020).
- Wuhan Municipal People’s Government. Wuhan Implements Restriction to Curb the Spread of the Epidemic. Available online: http://www.hubei.gov.cn/zhuanti/2020/gzxxgzbd/zxtb/202001/t20200121_2013644.shtml (accessed on 23 January 2020).
- Global Times. Real-Time Update on Coronavirus Outbreak. Available online: http://www.globaltimes.cn/content/1177737.shtml (accessed on 29 January 2020).
- Hu, X.; Cook, S.; Salazara, M.A. Internal Migration and Health in China. Lancet 2008, 372, 1717–1719. [Google Scholar] [CrossRef]
- The New York Times. China Grapples with Mystery Pneumonia-Like Illness. Available online: https://www.nytimes.com/2020/01/06/world/asia/china-SARS-pneumonialike.html (accessed on 6 January 2020).
- Therese, H.; Ye, X.; Li, L.; Wang, H. Health Status and Access to Health Care of Migrant Workers in China. Public Health Rep. 2008, 123, 189–197. [Google Scholar]
District | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Total |
---|---|---|---|---|---|---|---|
Total | 1999 | 2000 | 2000 | 2000 | 2000 | 2000 | 11,999 |
Hankou zone | |||||||
Jiang’an | 400 | 360 | 360 | 320 | 400 | - | 1840 |
Qiaokou | 240 | 240 | 240 | 200 | 240 | - | 1160 |
Jianghan | 280 | 240 | 200 | 200 | 160 | - | 1080 |
Dongxihu | 200 | 160 | 200 | 320 | 200 | - | 1080 |
Huangpi | 120 | 120 | 120 | 120 | 160 | - | 640 |
Xinzhou | 0 | 0 | 40 | 40 | 0 | - | 80 |
Wuchang zone | |||||||
Hongshan | 239 | 240 | 240 | 240 | 200 | - | 1159 |
Wuchang | 200 | 160 | 200 | 200 | 240 | - | 1000 |
Qingshan | 80 | 160 | 120 | 80 | 40 | - | 480 |
Jiangxia | 40 | 0 | 40 | 40 | 40 | - | 160 |
Hanyang zone | |||||||
Hanyang | 120 | 160 | 160 | 160 | 200 | - | 800 |
Hannan | 40 | 120 | 80 | 80 | 80 | - | 400 |
Caidian | 40 | 40 | 0 | 0 | 40 | - | 120 |
All three zones | - | - | - | - | - | 2000 | 2000 |
Province | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Total |
---|---|---|---|---|---|---|---|
Total | 1999 | 2000 | 2000 | 2000 | 2000 | 2000 | 11,999 |
Hubei | 1514 | 1508 | 1487 | 1465 | 1477 | 1547 | 8998 |
Henan | 113 | 134 | 109 | 159 | 170 | 125 | 810 |
Anhui | 59 | 58 | 55 | 53 | 56 | 46 | 327 |
Hunan | 57 | 46 | 68 | 54 | 41 | 36 | 302 |
Jiangxi | 58 | 40 | 53 | 57 | 49 | 34 | 291 |
Chongqing | 34 | 29 | 34 | 33 | 33 | 35 | 198 |
Zhejiang | 22 | 29 | 25 | 33 | 25 | 33 | 167 |
Sichuan | 22 | 30 | 45 | 21 | 22 | 27 | 167 |
Fujian | 14 | 17 | 16 | 15 | 39 | 19 | 120 |
Jiangsu | 38 | 13 | 16 | 19 | 13 | 11 | 110 |
Shandong | 12 | 18 | 11 | 13 | 8 | 12 | 74 |
Guangdong | 7 | 8 | 18 | 18 | 14 | 8 | 73 |
Hebei | 9 | 15 | 3 | 9 | 10 | 12 | 58 |
Gansu | 4 | 14 | 9 | 6 | 7 | 10 | 50 |
Guangxi | 9 | 8 | 8 | 7 | 3 | 7 | 42 |
Heilongjiang | 5 | 7 | 6 | 7 | 7 | 5 | 37 |
Shaanxi | 8 | 2 | 8 | 5 | 6 | 7 | 36 |
Shanxi | 2 | 3 | 3 | 8 | 4 | 9 | 29 |
Guizhou | 2 | 5 | 5 | 4 | 4 | 3 | 23 |
Qinghai | 5 | 3 | 6 | 2 | 0 | 3 | 19 |
Liaoning | 2 | 2 | 1 | 6 | 5 | 1 | 17 |
Yunnan | 0 | 1 | 5 | 3 | 0 | 2 | 11 |
Jilin | 0 | 4 | 1 | 0 | 3 | 2 | 10 |
Beijing | 1 | 2 | 3 | 1 | 2 | 0 | 9 |
Hainan | 0 | 0 | 2 | 0 | 1 | 2 | 5 |
Xinjiang | 0 | 3 | 1 | 0 | 0 | 1 | 5 |
Tianjin | 1 | 0 | 0 | 1 | 0 | 1 | 3 |
Shanghai | 0 | 1 | 0 | 1 | 0 | 1 | 3 |
Inner Mongolia | 1 | 0 | 0 | 0 | 1 | 0 | 2 |
Xizang | 0 | 0 | 1 | 0 | 0 | 1 | 2 |
Ningxia | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Population Type | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|
Permanent population at the year-end | 10,220,000 | 10,338,000 | 10,607,700 | 10,766,200 | 10,892,900 | 11,081,000 | 11,263,800 |
Household population | 8,220,500 | 8,273,100 | 8,292,700 | 8,338,400 | - | 8,837,300 | 8,896,900 |
Floating population (calculate) 1 | 1,999,500 | 2,064,900 | 2,315,000 | 2,427,800 | - | 2,243,700 | 2,423,700 |
Floating population (predicted) | 2,078,700 | 2,138,400 | 2,198,200 | 2,258,000 | 2,317,800 | 2,377,600 | 2,437,400 |
Province | Population Size in Wuhan | Percentage (95% CI) | Estimation of Population Size (95% CI) |
---|---|---|---|
Total | 11,999 | 100 | 5,000,000 |
Hubei | 8998 | 75.0 (74.2–75.8) | 3,749,479 (3,710,227 – 3,788,125) |
Henan | 810 | 6.8 (6.3–7.2) | 337,528 (315,401–360,712) |
Anhui | 327 | 2.7 (2.4–3.0) | 136,262 (122,063–151,622) |
Hunan | 302 | 2.5 (2.2–2.8) | 125,844 (112,201–140,665) |
Jiangxi | 291 | 2.4 (2.2–2.7) | 121,260 (107,869–135,822) |
Chongqing | 198 | 1.7 (1.4–1.9) | 82,507 (71,491–94,717) |
Zhejiang | 167 | 1.4 (1.2–1.6) | 69,589 (59,493–80,888) |
Sichuan | 167 | 1.4 (1.2–1.6) | 69,589 (59,493–80,888) |
Fujian | 120 | 1.0 (0.8–1.2) | 50,004 (41,492–59,734) |
Jiangsu | 110 | 0.9 (0.8–1.1) | 45,837 (37,702–55,194) |
Shandong | 74 | 0.6 (0.5–0.8) | 30,836 (24,228–38,681) |
Guangdong | 73 | 0.6 (0.5–0.8) | 30,419 (23,859–38,218) |
Hebei | 58 | 0.5 (0.4–0.6) | 24,169 (18,362–31,222) |
Gansu | 50 | 0.4 (0.3–0.5) | 20,835 (15,472–27,450) |
Guangxi | 42 | 0.4 (0.3–0.5) | 17,502 (12,619–23,643) |
Heilongjiang | 37 | 0.3 (0.2–0.4) | 15,418 (10,860–21,239) |
Shaanxi | 36 | 0.3 (0.2–0.4) | 15,002 (10,511–20,756) |
Shanxi | 29 | 0.2 (0.2–0.3) | 12,085 (8096–17,346) |
Guizhou | 23 | 0.2 (0.1–0.3) | 9584 (6078–14,374) |
Qinghai | 19 | 0.2 (0.1–0.2) | 7918 (4768–12,359) |
Liaoning | 17 | 0.1 (0.1–0.2) | 7084 (4128–11,337) |
Yunnan | 11 | 0.1 (0.05–0.2) | 4584 (2289–8199) |
Jilin | 10 | 0.1 (0.04–0.2) | 4167 (1999–7661) |
Beijing | 9 | 0.1 (0.03–0.14) | 3751 (1715–7117) |
Henan | 5 | 0.04 (0.01–0.1) | 2084 (677–4861) |
Xinjiang | 5 | 0.04 (0.01–0.1) | 2084 (677–4861) |
Tianjin | 3 | 0.03 (0.01–0.1) | 1250 (258–3653) |
Shanghai | 3 | 0.03 (0.01–0.1) | 1250 (258–3653) |
Inner Mongolia | 2 | 0.02 (0.002–0.1) | 834 (101–3010) |
Xizang | 2 | 0.02 (0.002–0.1) | 834 (101–3010) |
Ningxia | 1 | 0.008 (0.0002–0.05) | 417 (11–2322) |
Province | Total | Age Group | Migration Characteristics | Number of Migrant Family Members | Household Registration | Reason for Migration | Education Level | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<20 | 21–30 | 31–40 | 41–50 | 51–60 | 60+ | Migration Alone | Nuclear Family Migration | Extended Family Migration | 1 | 2 | 3 | 4 | ≥5 | Rural | Non-Rural | Work, Business | With Family | Other Reason | Junior High School And Below | High School | College and Above | ||
Total | 5,000,000 | 158,763 | 1,740,145 | 1,730,561 | 1,094,675 | 227,936 | 47,921 | 483,790 | 4,213,268 | 302,942 | 483,790 | 750,479 | 2,345,195 | 1,226,769 | 193,766 | 4,255,355 | 742,562 | 4,214,518 | 599,217 | 186,266 | 3,007,334 | 1,308,442 | 684,224 |
Hubei | 3,749,479 | 112,093 | 1,283,440 | 1,307,192 | 824,652 | 180,848 | 41,253 | 377,948 | 3,142,345 | 229,186 | 377,948 | 539,628 | 1,800,567 | 892,991 | 138,345 | 3,185,265 | 564,214 | 3,135,678 | 456,705 | 3,135,678 | 2,224,352 | 1,006,334 | 518,793 |
Henan | 337,528 | 12,918 | 123,344 | 101,258 | 85,007 | 13,751 | 1250 | 24,585 | 292,941 | 20,002 | 24,585 | 50,004 | 137,511 | 104,175 | 21,252 | 310,443 | 27,086 | 294,191 | 34,586 | 294,191 | 236,686 | 70,423 | 30,419 |
Anhui | 136,261 | 5000 | 47,504 | 45,837 | 31,253 | 5417 | 1250 | 9167 | 118,343 | 8751 | 9167 | 27,919 | 52,088 | 40,420 | 6667 | 124,594 | 11,668 | 119,593 | 15,001 | 119,593 | 96,258 | 26,669 | 13,334 |
Hunan | 125,844 | 3750 | 47,921 | 45,420 | 25,002 | 3750 | 0 | 13,334 | 105,842 | 6667 | 13,334 | 25,002 | 56,255 | 27,502 | 3750 | 107,092 | 18,752 | 107,092 | 16,668 | 107,092 | 72,089 | 37,920 | 15835 |
Jiangxi | 121,260 | 5834 | 49,171 | 41,253 | 20,835 | 4167 | 0 | 12,501 | 100,008 | 8751 | 12,501 | 20,002 | 43,754 | 37,086 | 7917 | 101,675 | 19,585 | 103,759 | 14,168 | 103,759 | 85,840 | 25,002 | 10,418 |
Chongqing | 82,507 | 4584 | 22,919 | 26,252 | 23,752 | 4584 | 417 | 5417 | 71,256 | 5834 | 5417 | 18,752 | 33,753 | 21,668 | 2917 | 73,339 | 9167 | 70,839 | 6667 | 70,839 | 61,255 | 15,835 | 5417 |
Zhejiang | 69,589 | 1667 | 19,585 | 24,585 | 18,335 | 4584 | 833 | 2917 | 64,589 | 2084 | 2917 | 10,001 | 35,836 | 17,918 | 2917 | 57,505 | 12,084 | 62,505 | 6251 | 62,505 | 33,336 | 22,919 | 13334 |
Sichuan | 69,589 | 2500 | 27,086 | 22,085 | 14,585 | 2917 | 417 | 5834 | 58,755 | 5000 | 5834 | 12,501 | 32,919 | 16,668 | 1667 | 61,672 | 7917 | 56,671 | 10,834 | 56,671 | 40,837 | 18,752 | 10001 |
Fujian | 50,004 | 2084 | 18,335 | 22,502 | 6251 | 833 | 0 | 5417 | 42,504 | 2084 | 5417 | 5834 | 22,085 | 15,001 | 1667 | 43,337 | 6667 | 46,254 | 3334 | 46,254 | 29,169 | 14,585 | 6251 |
Jiangsu | 45,837 | 2500 | 14,585 | 14,168 | 12,501 | 1667 | 417 | 417 | 42,087 | 3334 | 417 | 8334 | 24,585 | 11,668 | 833 | 40,003 | 5834 | 39,170 | 6251 | 39,170 | 26,669 | 13,751 | 5417 |
Shandong | 30,836 | 417 | 12,501 | 12,501 | 4584 | 833 | 0 | 3334 | 24,585 | 2917 | 3334 | 5834 | 12,918 | 8334 | 417 | 25,419 | 5417 | 26,669 | 3750 | 26,669 | 16,251 | 7917 | 6667 |
Guangdong | 30,419 | 417 | 12,918 | 12,918 | 3334 | 833 | 0 | 3750 | 25,002 | 1667 | 3750 | 5417 | 15,001 | 6251 | 0 | 14,585 | 15,835 | 24,585 | 5000 | 24,585 | 8751 | 9584 | 12,084 |
Hebei | 24,169 | 0 | 10,001 | 8751 | 4584 | 417 | 417 | 1250 | 22,502 | 417 | 1250 | 2084 | 10,834 | 8751 | 1250 | 21,252 | 2917 | 21,252 | 2500 | 21,252 | 14,168 | 7917 | 2084 |
Gansu | 20,835 | 1667 | 9167 | 7917 | 2084 | 0 | 0 | 2084 | 17,918 | 833 | 2084 | 4167 | 11,668 | 1250 | 1667 | 15,001 | 5834 | 16,668 | 3750 | 16,668 | 10,001 | 4167 | 6667 |
Guangxi | 17,501 | 417 | 7917 | 7501 | 1250 | 417 | 0 | 2917 | 14,585 | 0 | 2917 | 417 | 10,834 | 3334 | 0 | 15,001 | 2500 | 13,334 | 3334 | 13,334 | 10,834 | 4167 | 2500 |
Heilongjiang | 15,418 | 0 | 4167 | 4584 | 5000 | 833 | 833 | 417 | 13,751 | 1250 | 417 | 3750 | 10,418 | 833 | 0 | 9167 | 6251 | 13,751 | 1250 | 13,751 | 6251 | 6667 | 2500 |
Shaanxi | 15,001 | 0 | 5834 | 8334 | 417 | 417 | 0 | 3334 | 10,001 | 1667 | 3334 | 833 | 8751 | 833 | 1250 | 11,251 | 3750 | 13,751 | 1250 | 13,751 | 5417 | 4167 | 5417 |
Shanxi | 12,084 | 417 | 4584 | 5417 | 1667 | 0 | 0 | 1667 | 9167 | 1250 | 1667 | 1250 | 4167 | 4584 | 417 | 9584 | 2500 | 10,834 | 833 | 10,834 | 6251 | 2917 | 2917 |
Guizhou | 9584 | 417 | 5000 | 2500 | 1667 | 0 | 0 | 833 | 8751 | 0 | 833 | 1250 | 5417 | 2084 | 0 | 7501 | 2084 | 7084 | 2500 | 7084 | 5417 | 2084 | 2084 |
Qinghai | 7917 | 417 | 3750 | 2084 | 1667 | 0 | 0 | 0 | 7501 | 417 | 0 | 1667 | 3750 | 2084 | 417 | 7917 | 0 | 7084 | 833 | 7084 | 7501 | 417 | 0 |
Liaoning | 7084 | 0 | 1667 | 2917 | 1250 | 1250 | 0 | 1667 | 5000 | 417 | 1667 | 1667 | 3334 | 417 | 0 | 2500 | 4584 | 6251 | 417 | 6251 | 1667 | 1667 | 3750 |
Yunnan | 4584 | 833 | 2917 | 833 | 0 | 0 | 0 | 417 | 3750 | 417 | 417 | 833 | 2084 | 833 | 417 | 4167 | 417 | 3334 | 1250 | 3334 | 2917 | 417 | 1250 |
Beijing | 4167 | 0 | 417 | 833 | 2917 | 0 | 0 | 833 | 3334 | 0 | 833 | 1667 | 1250 | 417 | 0 | 1250 | 2917 | 4167 | 0 | 4167 | 1250 | 1667 | 1250 |
Jilin | 3750 | 417 | 1250 | 1250 | 833 | 0 | 0 | 1667 | 2084 | 0 | 1667 | 0 | 2084 | 0 | 0 | 833 | 2917 | 3334 | 417 | 3334 | 1250 | 0 | 2500 |
Hainan | 2084 | 0 | 1250 | 417 | 0 | 417 | 0 | 833 | 1250 | 0 | 833 | 0 | 1250 | 0 | 0 | 833 | 1250 | 1667 | 417 | 1667 | 417 | 833 | 833 |
Xinjiang | 2084 | 0 | 833 | 0 | 1250 | 0 | 0 | 417 | 1667 | 0 | 417 | 0 | 417 | 1250 | 0 | 2084 | 0 | 1667 | 417 | 1667 | 1250 | 417 | 417 |
Tianjin | 1250 | 417 | 417 | 417 | 0 | 0 | 0 | 417 | 833 | 0 | 417 | 417 | 0 | 417 | 0 | 833 | 417 | 833 | 417 | 833 | 417 | 0 | 833 |
Shanghai | 1250 | 0 | 833 | 0 | 0 | 0 | 417 | 417 | 833 | 0 | 417 | 833 | 0 | 0 | 0 | 0 | 1250 | 1250 | 0 | 1250 | 0 | 417 | 833 |
Inner Mongolia | 833 | 0 | 417 | 417 | 0 | 0 | 0 | 0 | 833 | 0 | 0 | 0 | 833 | 0 | 0 | 417 | 417 | 417 | 417 | 417 | 0 | 417 | 417 |
Xizang | 833 | 0 | 0 | 417 | 0 | 0 | 417 | 0 | 833 | 0 | 0 | 417 | 417 | 0 | 0 | 417 | 417 | 417 | 0 | 417 | 417 | 417 | 0 |
Ningxia | 417 | 0 | 417 | 0 | 0 | 0 | 0 | 0 | 417 | 0 | 0 | 0 | 417 | 0 | 0 | 417 | 0 | 417 | 0 | 417 | 417 | 0 | 0 |
City | Population Size in Wuhan | Percentage (95% CI) | Estimation of Population Size (95% CI) |
---|---|---|---|
Total | 1477 | 100 | 3,749,479 |
Xiaogan | 346 | 23.4 (21.3–25.7) | 878,348 (798,137–962,540) |
Wuhan | 289 | 19.6 (17.6–21.7) | 733,649 (658,849–813,015) |
Huanggang | 207 | 14.0 (12.3–15.9) | 525,486 (460,570–595,817) |
DMP cities 1 | 133 | 9.0 (7.6–10.6) | 337,631 (284724–396,739) |
Jingzhou | 131 | 8.9 (7.5–10.4) | 332,554 (280,029–391,301) |
Jingmen | 66 | 4.5 (3.5–5.7) | 167,546 (130,201–211,854) |
Suizhou | 59 | 4.0 (3.1–5.1) | 149,776 (114,529–192,075) |
Xianning | 59 | 4.0 (3.1–5.1) | 149,776 (114,529–192,075) |
Huangshi | 52 | 3.5 (2.6–4.6) | 132,006 (98,999–172,155) |
Xiangyang | 37 | 2.5 (1.8–3.4) | 93,927 (66,358–128,851) |
Ezhou | 34 | 2.3 (1.6–3.2) | 86,312 (59,966–120,059) |
Yichang | 27 | 1.8 (1.2–2.6) | 68,542 (45,296–99,309) |
Enshi | 23 | 1.6 (1.0–2.3) | 58,387 (37,106–87,268) |
Shiyan | 14 | 0.9 (0.5–1.6) | 35,540 (19,465–59,439) |
No. | District or County | Population Size in Wuhan | Percentage (95% CI) | Estimation of Population Size (95% CI) |
---|---|---|---|---|
Total | 1477 | 100 | 3,749,476 | |
1 | Huangpi | 139 | 9.4 (8.0–11.0) | 352,862 (298,830–413,031) |
2 | Hanchuan | 95 | 6.4 (5.2–7.8) | 241,165 (196,273–292,679) |
3 | Xiantao | 82 | 5.6 (4.4–6.8) | 208,163 (166,459–256,639) |
4 | Xinzhou | 66 | 4.5 (3.5–5.7) | 167,546 (130,201–211,854) |
5 | Hong’an | 60 | 4.1 (3.1–5.2) | 152,315 (116,759–194,908) |
6 | Yunmeng | 49 | 3.3 (2.5–4.4) | 124,390 (92,395–163,568) |
7 | Honghu | 46 | 3.1 (2.3–4.1) | 116,775 (85,825–154,948) |
8 | Macheng | 46 | 3.1 (2.3–4.1) | 116,775 (85,825–154,948) |
9 | Xiaonan | 42 | 2.8 (2.1–3.8) | 106,620 (77,125–143,397) |
10 | Xiaochang | 41 | 2.8 (2.0–3.7) | 104,082 (74,961–140,497) |
11 | Jingshan | 39 | 2.6 (1.9–3.6) | 99,005 (70,649–134,685) |
12 | Yingcheng | 39 | 2.6 (1.9–3.6) | 99,005 (70,649–134,685) |
13 | Dawu | 38 | 2.6 (1.8–3.5) | 96,466 (68,501–131,771) |
14 | Guangshui | 38 | 2.6 (1.8–3.5) | 96,466 (68,501–131,771) |
15 | Tianmen | 35 | 2.4 (1.7–3.3) | 88,850 (62,091–122,996) |
16 | Xishui | 35 | 2.4 (1.7–3.3) | 88,850 (62,091–122,996) |
17 | Jianli | 34 | 2.3 (1.6–3.2) | 86,312 (59,966–120,059) |
18 | Anlu | 32 | 2.2 (1.5–3.0) | 81,234 (55,737–114,166) |
19 | Jiangxia | 29 | 2.0 (1.3–2.8) | 73,619 (49,448–105,275) |
20 | Caidian | 28 | 1.9 (1.3–2.7) | 71,080 (47,368–102,296) |
21 | ND 1 | 26 | 1.8 (1.2–2.6) | 66,003 (43,233–96,313) |
22 | Huangmei | 25 | 1.7 (1.1–2.5) | 63,464 (41,180–93,308) |
23 | Yangxin | 24 | 1.6 (1.0–2.4) | 60,926 (39,138–90,293) |
24 | Daye | 20 | 1.4 (0.8–2.1) | 50,772 (31,084–78,123) |
25 | Gong’an | 20 | 1.4 (0.8–2.1) | 50,772 (31,084–78,123) |
26 | Tongshan | 17 | 1.2 (0.7–1.8) | 43,156 (25,192–68,858) |
27 | Jiayu | 16 | 1.1 (0.6–1.8) | 40,617 (23,263–65,737) |
28 | Zhongxiang | 15 | 1.0 (0.6–1.7) | 38,079 (21,353–62,598) |
29 | Qianjiang | 14 | 0.9 (0.5–1.6) | 35,540 (19,465–59,439) |
30 | Songzi | 14 | 0.9 (0.5–1.6) | 35,540 (19,465–59,439) |
31 | Huarong | 13 | 0.9 (0.5–1.5) | 33,001 (17,602–56,257) |
32 | Zengdu | 13 | 0.9 (0.5–1.5) | 33,001 (17,602–56,257) |
33 | Enshi | 12 | 0.8 (0.4–1.4) | 30,463 (15,766–53,051) |
34 | Liangzihu | 12 | 0.8 (0.4–1.4) | 30,463 (15,766–53,051) |
35 | Zaoyang | 11 | 0.7 (0.4–1.3) | 27,924 (13,961–49,817) |
36 | Dongxihu | 10 | 0.7 (0.3–1.2) | 25,386 (12,191–46,553) |
37 | Wuxue | 9 | 0.6 (0.3–1.2) | 22,847 (10,461–43,252) |
38 | Huangzhou | 8 | 0.5 (0.2–1.1) | 20,309 (8,778–39,911) |
39 | Hannan | 8 | 0.5 (0.2–1.1) | 20,309 (8778–39,911) |
40 | Xian’an | 8 | 0.5 (0.2–1.1) | 20,309 (8778–39,911) |
41 | Xiangzhou | 8 | 0.5 (0.2–1.1) | 20,309 (8778–39,911) |
42 | Zhijiang | 8 | 0.5 (0.2–1.1) | 20,309 (8778–39,911) |
43 | Echeng | 7 | 0.5 (0.2–1.0) | 17,770 (7152–36,521) |
44 | Luotian | 7 | 0.5 (0.2–1.0) | 17,770 (7152–36,521) |
45 | Badong | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
46 | Chibi | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
47 | Chongyang | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
48 | Hongshan | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
49 | Shayang | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
50 | Shishou | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
51 | Sui | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
52 | Tuanfeng | 6 | 0.4 (0.1–0.9) | 15,232 (5595–33,073) |
53 | Gucheng | 5 | 0.3 (0.1–0.8) | 12,693 (4125–29,554) |
54 | Xiangcheng | 5 | 0.3 (0.1–0.8) | 12,693 (4125–29,554) |
55 | Jiangling | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
56 | Shashi | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
57 | Tongcheng | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
58 | Yiling | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
59 | Yingshan | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
60 | Qichun | 4 | 0.3 (0.1–0.7) | 10,154 (2769–25,944) |
61 | Dangyang | 3 | 0.2 (0.04–0.6) | 7616 (1571–22,213) |
62 | Fancheng | 3 | 0.2 (0.04–0.6) | 7616 (1571–22,213) |
63 | Maojian | 3 | 0.2 (0.04–0.6) | 7616 (1571–22,213) |
64 | Xialu | 3 | 0.2 (0.04–0.6) | 7616 (1571–22,213) |
65 | Dongbao | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
66 | Duodao | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
67 | Shannongjia | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
68 | Jianshi | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
69 | Jiang’an | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
70 | Danjiangkou | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
71 | Jingzhou | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
72 | Lichuan | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
73 | Saishan | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
74 | Wuchang | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
75 | Yicheng | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
76 | Yidu | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
77 | Yunxi | 2 | 0.1 (0.02–0.5) | 5077 (615–18,308) |
78 | Changyang | 2 | 0.1 (0.02–0.5) | 5077 (615–18308) |
79 | Zigui | 2 | 0.1 (0.02–0.5) | 5077 (615–18308) |
80 | Baokang | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
81 | Dianjun | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
82 | Dahongshan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
83 | Qujialing | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
84 | Wujiagang | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
85 | Xiaogan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
86 | Fang | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
87 | Tieshan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
88 | Xiling | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
89 | Xianfeng | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
90 | Xingshan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
91 | Yuan’an | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
92 | Yunyang | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
93 | Zhangwan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
94 | Zhushan | 1 | 0.1 (0.002–0.4) | 2538 (64–14,122) |
City | Total | Age Group | Migration Characteristics | Number of Migrant Family Members | Household Registration | Reason for Migration | Education Level | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<20 | 21–30 | 31–40 | 41–50 | 51–60 | 60+ | Migration Alone | Nuclear family Migration | Extended Family Migration | 1 | 2 | 3 | 4 | ≥5 | Rural | Non-Rural | Work, Business | With Family | Other Reason | Junior High School and Below | High School | College and Above | ||
Total | 3,749,479 | 25,386 | 1,304,829 | 1,360,678 | 751,419 | 236,088 | 71,080 | 487,407 | 2,985,367 | 276,705 | 487,407 | 548,333 | 1,627,228 | 906,272 | 180,239 | 3,114,835 | 632,106 | 2,891,440 | 538,178 | 319,861 | 1,939,473 | 1,083,973 | 726,033 |
Xiaogan | 878,348 | 7616 | 279,244 | 291,936 | 210,702 | 71,080 | 17,770 | 73,619 | 738,726 | 66,003 | 73,619 | 152,315 | 350,324 | 253,858 | 48,233 | 771,728 | 106,620 | 662,569 | 137,083 | 78,696 | 540,717 | 225,933 | 111,697 |
Wuhan | 733,649 | 10,154 | 256,396 | 286,859 | 134,545 | 38,079 | 7616 | 93,927 | 578,796 | 60,926 | 93,927 | 78,696 | 357,939 | 170,085 | 33,002 | 599,104 | 134,545 | 535,640 | 109,159 | 88,850 | 337,631 | 236,088 | 159,930 |
Huanggang | 525,486 | 2539 | 167,546 | 208,163 | 114,236 | 25,386 | 7616 | 68,542 | 408,711 | 48,233 | 68,542 | 60,926 | 203,086 | 149,776 | 43,156 | 459,483 | 66,003 | 431,558 | 53,310 | 40,617 | 294,475 | 149,776 | 81,234 |
DMP cities | 337,631 | 0 | 121,852 | 116,775 | 68,542 | 17,770 | 12,693 | 48,233 | 261,473 | 27,924 | 48,233 | 50,772 | 157,392 | 66,003 | 15,231 | 241,165 | 96,466 | 266,551 | 43,156 | 27,924 | 180,239 | 91,389 | 66,003 |
Jingzhou | 332,554 | 2539 | 106,620 | 124,390 | 68,542 | 25,386 | 5077 | 55,849 | 253,858 | 22,847 | 55,849 | 68,542 | 129,467 | 71,080 | 7616 | 274,166 | 58,387 | 256,396 | 50,772 | 25,386 | 152,315 | 106,620 | 73,619 |
Jingmen | 167,546 | 0 | 66,003 | 58,387 | 30,463 | 12,693 | 0 | 30,463 | 132,006 | 5077 | 30,463 | 33,002 | 81,234 | 20,309 | 2539 | 132,006 | 35,540 | 139,622 | 17,770 | 10,154 | 78,696 | 53,310 | 35,540 |
Suizhou | 149,776 | 0 | 66,003 | 40,617 | 22,847 | 15,231 | 5077 | 7616 | 134,545 | 7616 | 7616 | 27,924 | 76,157 | 27,924 | 10,154 | 132,006 | 17,770 | 111,697 | 38,079 | 0 | 81,234 | 50,772 | 17,770 |
Xianning | 149,776 | 0 | 53,310 | 60,926 | 22,847 | 10,154 | 2539 | 27,924 | 116,775 | 5077 | 27,924 | 20,309 | 63,464 | 33,002 | 5077 | 129,467 | 20,309 | 129,467 | 7616 | 12,693 | 76,157 | 35,540 | 38,079 |
Huangshi | 132,006 | 0 | 45,694 | 38,079 | 35,540 | 7616 | 5077 | 22,847 | 93,927 | 15,231 | 22,847 | 7616 | 53,310 | 38,079 | 10,154 | 101,543 | 30,463 | 106,620 | 17,770 | 7616 | 73,619 | 30,463 | 27,924 |
Xiangyang | 93,927 | 0 | 38,079 | 30,463 | 17,770 | 5077 | 2539 | 22,847 | 68,542 | 2539 | 22,847 | 22,847 | 33,002 | 12,693 | 2539 | 73,619 | 20,309 | 68,542 | 15,231 | 10,154 | 33,002 | 35,540 | 25,386 |
Ezhou | 86,312 | 0 | 38,079 | 35,540 | 5077 | 5077 | 2539 | 10,154 | 73,619 | 2539 | 10,154 | 5077 | 45,694 | 22,847 | 2539 | 76,157 | 10,154 | 55,849 | 20,309 | 10,154 | 43,156 | 25,386 | 17,770 |
Yichang | 68,542 | 0 | 25,386 | 33,002 | 10,154 | 0 | 0 | 5077 | 58,387 | 5077 | 5077 | 12,693 | 35,540 | 15,231 | 0 | 43,156 | 25,386 | 53,310 | 10,154 | 5077 | 12,693 | 22,847 | 33,002 |
Enshi | 58,387 | 2539 | 20,309 | 22,847 | 7616 | 2539 | 2539 | 12,693 | 40,617 | 5077 | 12,693 | 5077 | 25,386 | 15,231 | 0 | 55,849 | 2539 | 45,694 | 10,154 | 2539 | 25,386 | 12,693 | 20,309 |
Shiyan | 35,540 | 0 | 20,309 | 12,693 | 2539 | 0 | 0 | 7616 | 25,386 | 2539 | 7616 | 2539 | 15,231 | 10,154 | 0 | 25,386 | 10,154 | 27,924 | 7616 | 0 | 10,154 | 7616 | 17,770 |
City | Confirmed Cases in 2020 (Accumulative) 1 | Floating Population in Wuhan (Unit: 10,000 People) 2 | Ratio 3 (City) | ||||||
---|---|---|---|---|---|---|---|---|---|
Jan 25 12:07 p.m. | Jan 26 13:49 p.m. | Jan 27 12:39 p.m. | Jan 28 12:08 p.m. | Jan 29 12:22 p.m. | Jan 30 12:49 p.m. | Jan 31 12:10 p.m. | |||
DMP cities 4 | 13 | 16 | 30 | 58 | 77 | 114 | 176 | 33.76 | 5.21 |
Xiaogan | 26 | 55 | 100 | 173 | 274 | 399 | 541 | 87.83 | 6.16 |
Jingzhou | 10 | 33 | 47 | 71 | 101 | 151 | 221 | 33.26 | 6.65 |
Huanggang | 64 | 122 | 154 | 213 | 324 | 496 | 573 | 52.55 | 10.90 |
Xianning | 0 | 43 | 64 | 91 | 112 | 130 | 166 | 14.98 | 11.08 |
Huangshi | 0 | 31 | 36 | 53 | 86 | 113 | 168 | 13.20 | 12.73 |
Enshi | 11 | 17 | 25 | 38 | 51 | 66 | 75 | 5.84 | 12.85 |
Jingmen | 21 | 38 | 90 | 114 | 142 | 191 | 227 | 16.75 | 13.55 |
Suizhou | 5 | 36 | 52 | 70 | 116 | 143 | 228 | 14.98 | 15.22 |
Ezhou | 1 | 1 | 20 | 57 | 84 | 123 | 189 | 8.63 | 21.90 |
Yichang | 1 | 20 | 31 | 51 | 63 | 117 | 167 | 6.85 | 24.36 |
Xiangyang | 0 | 8 | 36 | 70 | 131 | 163 | 286 | 9.39 | 30.45 |
Shiyan | 5 | 20 | 40 | 65 | 88 | 119 | 150 | 3.55 | 42.21 |
Pr 5 | 0.65 | 0.61 | 0.67 | 0.78 | 0.80 | 0.81 | 0.84 | - | - |
Province | Confirmed Cases in 2020 (Accumulative) | Floating Population in Wuhan (Unit: 10,000 People) | Ratio (Province) | ||||||
---|---|---|---|---|---|---|---|---|---|
Jan 25 12:07 p.m. | Jan 26 13:49 p.m. | Jan 27 12:39 p.m. | Jan 28 12:08 p.m. | Jan 29 12:22 p.m. | Jan 30 12:49 p.m. | Jan 31 12:10 p.m. | |||
Qinghai | 1 | 1 | 4 | 6 | 6 | 6 | 8 | 0.80 | 10.00 |
Xizang | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.10 | 10.00 |
Henan | 32 | 83 | 128 | 168 | 206 | 278 | 352 | 33.75 | 10.43 |
Gansu | 4 | 7 | 14 | 19 | 24 | 26 | 29 | 2.10 | 13.81 |
Guizhou | 4 | 5 | 7 | 9 | 9 | 12 | 15 | 0.95 | 15.79 |
Anhui | 39 | 60 | 70 | 106 | 152 | 200 | 237 | 13.65 | 17.36 |
Jiangxi | 18 | 36 | 48 | 72 | 109 | 162 | 240 | 12.15 | 19.75 |
Fujian | 10 | 18 | 35 | 59 | 82 | 101 | 120 | 5.00 | 24.00 |
Chongqing | 57 | 75 | 110 | 132 | 147 | 165 | 206 | 8.25 | 24.97 |
Sichuan | 15 | 44 | 69 | 90 | 108 | 142 | 177 | 6.95 | 25.47 |
Hunan | 43 | 69 | 100 | 143 | 221 | 277 | 332 | 12.60 | 26.35 |
Shanxi | 6 | 9 | 13 | 20 | 27 | 35 | 39 | 1.20 | 32.50 |
Hebei | 8 | 13 | 18 | 33 | 48 | 65 | 82 | 2.40 | 34.17 |
Jilin | 4 | 4 | 6 | 8 | 9 | 14 | 14 | 0.40 | 35.00 |
Jiangsu | 18 | 31 | 47 | 70 | 99 | 129 | 168 | 4.60 | 36.52 |
Heilongjiang | 9 | 15 | 21 | 30 | 37 | 43 | 59 | 1.55 | 38.06 |
Guangxi | 23 | 33 | 46 | 51 | 58 | 78 | 87 | 1.75 | 49.71 |
Shandong | 21 | 46 | 63 | 87 | 121 | 145 | 178 | 3.10 | 57.42 |
Shaanxi | 5 | 22 | 35 | 35 | 56 | 63 | 87 | 1.50 | 58.00 |
Liaoning | 12 | 19 | 23 | 30 | 36 | 41 | 45 | 0.70 | 64.29 |
Zhejiang | 62 | 104 | 128 | 173 | 296 | 428 | 537 | 6.95 | 77.27 |
Xinjiang | 3 | 4 | 5 | 10 | 13 | 14 | 17 | 0.20 | 85.00 |
Guangdong | 78 | 98 | 146 | 188 | 241 | 311 | 393 | 3.05 | 128.85 |
Yunnan | 5 | 11 | 19 | 26 | 44 | 70 | 76 | 0.45 | 168.89 |
Inner Mongolia | 1 | 7 | 11 | 13 | 16 | 18 | 20 | 0.10 | 200.00 |
Tianjin | 8 | 13 | 17 | 24 | 25 | 28 | 32 | 0.15 | 213.33 |
Hainan | 8 | 22 | 31 | 40 | 43 | 46 | 50 | 0.20 | 250.00 |
Beijing | 36 | 54 | 68 | 80 | 91 | 114 | 132 | 0.40 | 330.00 |
Ningxia | 2 | 4 | 7 | 11 | 12 | 17 | 21 | 0.05 | 420.00 |
Shanghai | 33 | 40 | 53 | 66 | 80 | 101 | 128 | 0.15 | 853.33 |
Pr (All province) | 0.40 | 0.59 | 0.63 | 0.66 | 0.62 | 0.62 | 0.63 | - | - |
Pr (First type) | 0.90 | 0.91 | 0.94 | 0.96 | 0.96 | 0.96 | 0.96 | - | - |
Pr (Second type) | 0.56 | 0.72 | 0.76 | 0.78 | 0.70 | .69 | 0.70 | - | - |
Pr (Second type excluded Henan and Zhejiang) | 0.78 | 0.83 | 0.81 | 0.86 | 0.89 | 0.91 | 0.93 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Liu, L.; Guo, W.; Yang, A.; Ye, C.; Jilili, M.; Ren, M.; Xu, P.; Long, H.; Wang, Y. Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study. Int. J. Environ. Res. Public Health 2020, 17, 1679. https://doi.org/10.3390/ijerph17051679
Fan C, Liu L, Guo W, Yang A, Ye C, Jilili M, Ren M, Xu P, Long H, Wang Y. Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study. International Journal of Environmental Research and Public Health. 2020; 17(5):1679. https://doi.org/10.3390/ijerph17051679
Chicago/Turabian StyleFan, Changyu, Linping Liu, Wei Guo, Anuo Yang, Chenchen Ye, Maitixirepu Jilili, Meina Ren, Peng Xu, Hexing Long, and Yufan Wang. 2020. "Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study" International Journal of Environmental Research and Public Health 17, no. 5: 1679. https://doi.org/10.3390/ijerph17051679
APA StyleFan, C., Liu, L., Guo, W., Yang, A., Ye, C., Jilili, M., Ren, M., Xu, P., Long, H., & Wang, Y. (2020). Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study. International Journal of Environmental Research and Public Health, 17(5), 1679. https://doi.org/10.3390/ijerph17051679