Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan
Abstract
:1. Introduction
2. Background to Dengue Fever
2.1. Dengue Fever in Taiwan
2.2. Dengue and Climate Change
2.3. Quantitative Studies on Climate–Dengue Relationship
3. Estimating the Threshold Effects of Temperature on Dengue Vector Index
3.1. Dataset
3.2. Estimating Temperature Thresholds
3.3. Estimating Threshold Effects of Meteorological Factors on Breteau Index
4. Estimating the Relationship between Entomological Index and Dengue Cases
5. Projecting the Effects of Temperature on Entomological Index under Climate Change Scenarios
6. Discussion
7. Conclusions
7.1. Contributions of the Study
7.2. Implications of the Study
7.3. Limitations of the Study and Eecommendations for Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | LLC Test | IPS Test | PP-Fisher Chi-Sq. |
---|---|---|---|
Breteau Index (BI) | −47.58*** | −54.06*** | 131.73*** |
Dengue Cases (DF) | −28.81*** | −48.65*** | 118.41*** |
Average Temperature (Temp) | −2.49** | −13.27*** | 27.93*** |
Precipitation (Precp) | −72.06*** | −66.60*** | 144.49*** |
Relative Humidity (Humid) | −48.37*** | −47.13*** | 140.77*** |
References
- WHO. Global Strategy for dengue prevention and control, 2012–2020. Available online: http://www.who.int/tdr/publications/documents/denguediagnosis.pdf (accessed on 2 October 2019).
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Q.; Lin, H.; Xin, B.; Nie, J. Spatial analysis of dengue fever in Guangdong Province, China, 2001–2006. Asia Pac. J. Public Health 2014, 26, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kyle, J.L.; Harris, E. Global spread and persistence of dengue. Ann. Rev. Microbiol. 2008, 62, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubler, D.J. Dengue, urbanization and globalization: The unholy trinity of the 21st century. Trop. Med. Health 2011, 39 (Suppl. 4), S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P. Dengue: The risk to developed and developing countries. Proc. Natl. Acad. Sci. USA 1994, 91, 2395–2400. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [Green Version]
- Focks, D.A.; Haile, D.; Daniels, E.; Mount, G.A. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. J. Med Entomol. 1993, 30, 1003–1017. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef]
- Madder, D.; Surgeoner, G.; Helson, B. Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in southern Ontario. J. Med Entomol. 1983, 20, 275–287. [Google Scholar] [CrossRef]
- Scott, T.W.; Chow, E.; Strickman, D.; Kittayapong, P.; Wirtz, R.A.; Lorenz, L.H.; Edman, J.D. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J. Med Entomol. 1993, 30, 922–927. [Google Scholar] [CrossRef]
- Wu, P.-C.; Guo, H.-R.; Lung, S.-C.; Lin, C.-Y.; Su, H.-J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 2007, 103, 50–57. [Google Scholar] [CrossRef]
- Chen, S.-C.; Liao, C.-M.; Chio, C.-P.; Chou, H.-H.; You, S.-H.; Cheng, Y.-H. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci. Total Environ. 2010, 408, 4069–4075. [Google Scholar] [CrossRef]
- Yang, H.; Macoris, M.D.L.D.G.; Galvani, K.; Andrighetti, M.; Wanderley, D. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 2009, 137, 1188–1202. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.-S.; Williams, C. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- Wu, X.; Lang, L.; Ma, W.; Song, T.; Kang, M.; He, J.; Zhang, Y.; Lu, L.; Lin, H.; Ling, L. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci. Total Environ. 2018, 628, 766–771. [Google Scholar] [CrossRef]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Sanchez, L.; Vanlerberghe, V.; Alfonso, L.; del Carmen Marquetti, M.; Guzman, M.G.; Bisset, J.; Van Der Stuyft, P. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 2006, 12, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 2009, 112, 174–180. [Google Scholar] [CrossRef]
- Pham, H.V.; Doan, H.T.; Phan, T.T.; Minh, N.N.T. Ecological factors associated with dengue fever in a Central Highlands province, Vietnam. BMC Infect. Dis. 2011, 11, 172. [Google Scholar] [CrossRef]
- Li, C.; Lim, T.; Han, L.; Fang, R. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. Southeast Asian J. Trop. Med. Public Health 1985, 16, 560–568. [Google Scholar]
- Romero-Vivas, C.M.; Falconar, A.K. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors. J. Am. Mosq. Control Assoc. 2005, 21, 15–22. [Google Scholar] [CrossRef]
- Arboleda, S.; Jaramillo-O., N.; Peterson, A.T. Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia. J. Vector Ecol. 2012, 37, 37–48. [Google Scholar] [CrossRef]
- Nitatpattana, N.; Singhasivanon, P.; Kiyoshi, H.; Andrianasolo, H.; Yoksan, S.; Gonzalez, J.; Barbazan, P. Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998. Southeast Asian J. Trop. Med. Public Health 2007, 38, 427–433. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G. Research on dengue and dengue-like illness in East Asia and the Western Pacific during the First Half of the 20th century. Rev. Med Virol. 2007, 17, 327–341. [Google Scholar] [CrossRef]
- King, C.-C.; Wu, Y.-C.; Chao, D.-Y.; Lin, T.-H.; Chow, L.; Wang, H.-T.; Ku, C.-C.; Kao, C.-L.; Chien, L.-J.; Chang, H.-J. Major epidemics of dengue in Taiwan in 1981–2000: Related to intensive virus activities in Asia. Dengue Bull. 2000, 24, 1–10. [Google Scholar]
- Rasheed, S.; Butlin, R.; Boots, M. A review of dengue as an emerging disease in Pakistan. Public Health 2013, 127, 11–17. [Google Scholar] [CrossRef]
- Taiwan National Infectious Disease Statistics System. Available online: https://nidss.cdc.gov.tw/en/SingleDisease.aspx?dc=1&dt=4&disease=061&position=1 (accessed on 20 May 2019).
- Intergovernmental Panel on Climate, Change Working Group II. Climate Change 2014: Impacts, Adaptation and Vulnerability; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Focks, D.A.; Brenner, R.J.; Hayes, J.; Daniels, E. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am. J. Trop. Med. Hyg. 2000, 62, 11–18. [Google Scholar] [CrossRef]
- Rowley, W.A.; Graham, C.L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 1968, 14, 1251–1257. [Google Scholar] [CrossRef]
- Bishop, A.; Gilchrist, B.M. Experiments upon the feeding of Aedes aegypti through animal membranes with a view to applying this method to the chemotherapy of malaria. Parasitology 1946, 37, 85–100. [Google Scholar] [CrossRef]
- Connor, M.E. Suggestions for Developing a Campaign to Control Yellow Fever1. Am. J. Trop. Med. Hyg. 1924, 1, 277–307. [Google Scholar] [CrossRef]
- Naish, S.; Dale, P.; Mackenzie, J.S.; McBride, J.; Mengersen, K.; Tong, S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 2014, 14, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J. Ecology of Aedes mosquitoes and their relationship with dengue epidemics in Taiwan area. In Proceedings of the 4th National Vector Control Symposium, Kenting, Taiwan, 17 April 1991; Chinese Journal of Entomology Special Publication. 1991; 6, pp. 6105–6127. [Google Scholar]
- Lin, T.-H. Surveillance and control of Aedes aegypti in epidemic areas of Taiwan. Gaoxiong Yi Xue Ke Xue Za Zhi (Kaohsiung J. Med Sci.) 1994, 10, S88–S93. [Google Scholar]
- Tseng, W.-C.; Chen, C.-C.; Chang, C.-C.; Chu, Y.-H. Estimating the economic impacts of climate change on infectious diseases: A case study on dengue fever in Taiwan. Clim. Chang. 2009, 92, 123–140. [Google Scholar] [CrossRef]
- Chen, M.-J.; Lin, C.-Y.; Wu, Y.-T.; Wu, P.-C.; Lung, S.-C.; Su, H.-J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7, e34651. [Google Scholar] [CrossRef]
- Fan, J.; Wei, W.; Bai, Z.; Fan, C.; Li, S.; Liu, Q.; Yang, K. A systematic review and meta-analysis of dengue risk with temperature change. Int. J. Environ. Res. Public Health 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-L.; Yang, S.-J.; Yen, H.-J.; Christakos, G. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch. Environ. Res. Risk Assess. 2011, 25, 485–494. [Google Scholar] [CrossRef]
- Descloux, E.; Mangeas, M.; Menkes, C.E.; Lengaigne, M.; Leroy, A.; Tehei, T.; Guillaumot, L.; Teurlai, M.; Gourinat, A.-C.; Benzler, J. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 2012, 6, e1470. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.-C.; Yu, H.-L. Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence. Environ. Int. 2014, 73, 46–56. [Google Scholar] [CrossRef]
- Bultó, P.L.O.; Rodríguez, A.P.; Valencia, A.R.; Vega, N.L.; Gonzalez, M.D.; Carrera, A.P. Assessment of human health vulnerability to climate variability and change in Cuba. Environ. Health Perspect. 2006, 114, 1942–1949. [Google Scholar] [CrossRef]
- Shu, P.-Y.; Chien, L.-J.; Chang, S.-F.; Su, C.-L.; Kuo, Y.-C.; Liao, T.-L.; Ho, M.-S.; Lin, T.-H.; Huang, J.-H. Fever screening at airports and imported dengue. Emerg. Infect. Dis. 2005, 11, 460. [Google Scholar] [CrossRef]
- Chang, F.-S.; Tseng, Y.-T.; Hsu, P.-S.; Chen, C.-D.; Lian, I.-B.; Chao, D.-Y. Re-assess vector indices threshold as an early warning tool for predicting dengue epidemic in a dengue non-endemic country. PLoS Negl. Trop. Dis. 2015, 9, e0004043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiwan Centers for Disease Control Open Data. Available online: https://od.cdc.gov.tw/eic/MosIndex_CodeBook.pdf (accessed on 26 April 2019).
- Taiwan Central Weather Bureau Observation Data Inquire System. Available online: http://e-service.cwb.gov.tw/HistoryDataQuery/ (accessed on 26 April 2019).
- Pinto, E.; Coelho, M.; Oliver, L.; Massad, E. The influence of climate variables on dengue in Singapore. Int. J. Environ. Health Res. 2011, 21, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Breslow, N. Tests of hypotheses in overdispersed Poisson regression and other quasi-likelihood models. J. Am. Stat. Assoc. 1990, 85, 565–571. [Google Scholar] [CrossRef]
- Faddy, M.; Smith, D. Analysis of count data with covariate dependence in both mean and variance. J. Appl. Stat. 2011, 38, 2683–2694. [Google Scholar] [CrossRef]
- Green, W. Econometric Analysis; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Chan, M.; Johansson, M.A. The incubation periods of dengue viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef]
- Scott, T.W.; Morrison, A.C. Vector dynamics and transmission of dengue virus: Implications for dengue surveillance and prevention strategies. In Dengue Virus; Springer: Berlin, Germany, 2010; pp. 115–128. [Google Scholar]
- Tun-Lin, W.; Burkot, T.; Kay, B. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med. Vet. Entomol. 2000, 14, 31–37. [Google Scholar] [CrossRef]
Region | Dengue Fever (Cases) | BI | Humidity (%) | Precipitation (mm) | Population Density (per km2) | ||
---|---|---|---|---|---|---|---|
Nationwide | Mean | 9.65 | 1.51 | 23.457 | 77.06 | 5.59 | 1225.36 |
St. Dev | 118.81 | 1.93 | 4.77 | 6.78 | 10.47 | 2233.55 | |
Max | 3416 | 30.44 | 32.56 | 98.86 | 123.14 | 9956.10 | |
Min | 0 | 0 | 0 | 46.86 | 0 | 61.79 | |
Southern | Mean | 52.55 | 3.48 | 25.44 | 74.25 | 5.56 | 719.15 |
St. Dev | 278.95 | 3.16 | 3.77 | 5.73 | 12.99 | 299.13 | |
Max | 3416 | 30.44 | 31.33 | 94.43 | 105.86 | 995.42 | |
Min | 0 | 0 | 13.21 | 55.86 | 0 | 296.20 |
Nationwide | Southern | |
---|---|---|
Test for single threshold | ||
108.48 | 28.56 | |
p-value | 0.060 | 0.000 |
Critical values (10, 5, 1) | 92.34, 120.63, 153.91 | 15.83, 15.93, 17.37 |
Test for double threshold | ||
17.58 | 9.31 | |
p-value | 0.52 | 0.000 |
Critical values (10, 5, 1) | 34.83, 41.12, 54.98 | 7.40, 7.74, 8.04 |
Test for triple threshold | ||
18.76 | 7.21 | |
p-value | 0.45 | 0.92 |
Critical values (10, 5, 1) | 35.65, 43.37, 64.02 | 12.62, 12.74, 14.03 |
Region | Threshold Effect | Estimates | 95% Confidence Intervals |
---|---|---|---|
Nationwide | Single threshold | = 27.21 | [27.09, 27.24] |
Southern | Double threshold | = 27.27 | [26.92, 27.29] |
= 30.17 | [29.74, 30.19] |
Assumption: Poisson Nested in NB | ||||||
Model | Test Statistic | Observation | LL (model) | df | AIC | BIC |
Nationwide | ||||||
Panel Poisson | LR-chi2(1) = 37.22 Prob > chi2 = 0.000 | 6545 | −8680.7 | 5 | 17,352.55 | 17,389.49 |
Panel NB | 6545 | −8652.2 | 6 | 17,316.33 | 17,357.05 | |
Southern | ||||||
Panel Poisson | LR-chi2(1) = 116.88 Prob > chi2 = 0.000 | 1155 | −2489.1 | 5 | 4986.18 | 5006.39 |
Panel NB | 1155 | −2357.9 | 6 | 4727.49 | 4758.29 |
Region | Temperature Range | Variable | Coefficient | Marginal Effect | Std. Err | 95% CI |
---|---|---|---|---|---|---|
Nationwide | Temp 27.21 | Temp. | 0.069*** | 0.087 | 0.004 | [0.060, 0.075] |
Precip. | 0.006*** | 0.007 | 0.001 | [0.003, 0.008] | ||
Humid. | −0.009*** | −0.011 | 0.004 | [−0.014, 0.005] | ||
Constant | −0.642*** | 0.202 | [−1.041, −0.243] | |||
Temp 27.21 | Temp. | 0.087*** | 0.261 | 0.017 | [0.073, 0.143] | |
Precip. | 0.008*** | 0.023 | 0.001 | [0.006, 0.010] | ||
Humid. | 0.042*** | 0.122 | 0.003 | [0.035, 0.047] | ||
Constant | −4.762*** | 1.023 | [−6.783, −2.751] | |||
Southern | Temp 27.27 | Temp. | 0.098*** | 0.288 | 0.011 | [0.078, 0.119] |
Precip. | 0.011*** | 0.032 | 0.002 | [0.005, 0.016] | ||
Humid. | −0.005 | −0.147 | 0.005 | [−0.016, 0.006] | ||
Constant | −1.191*** | 0.455 | [−2.085, 0.296] | |||
27.27 Temp 30.17 | Temp. | 0.112*** | 0.625 | 0.006 | [0.096, 0.122] | |
Precip | 0.006*** | 0.035 | 0.001 | [0.002, 0.008] | ||
Humid. | 0.024*** | 0.134 | 0.004 | [0.014, 0.032] | ||
Constant | −3.431*** | 0.326 | [−4.073, −2.789] | |||
Temperature Range | Variable | Coefficient | Marginal Effect | Std. Err | 95% CI | |
Temp 30.17 | Temp. | 0.453** | 1.487 | 0.208 | [0.005, 0.801] | |
Precip. | −0.004 | −0.013 | 0.014 | [−0.032, 0.024] | ||
Humid. | 0.068*** | 0.225 | 0.019 | [0.030, 0.106] | ||
Constant | −17.565** | 7.506 | [−32.297, −2.874] |
Assumption: Poisson Nested in NB | ||||||
---|---|---|---|---|---|---|
Model | Test Statistic | Observation | LL (model) | df | AIC | BIC |
Nationwide | ||||||
Panel Poisson | LR-chi2(1) = 306,944 Prob > chi2 = 0.000 | 6511 | −160,726.3 | 4 | 321,460.7 | 321,487.8 |
Panel NB | 6511 | −7253.8 | 5 | 14,517.7 | 14,551.6 | |
Southern | ||||||
Panel Poisson | LR-chi2(1) = 308,356 | 1149 | −160,726.3 | 4 | 132,471.2 | 132,723.4 |
Panel NB | Prob > chi2 = 0.000 | 1149 | −2986.2 | 5 | 5982.3 | 6007.5 |
Variable | Coefficient | Std. Err. | Marginal Effect | IRR | 95% CI |
---|---|---|---|---|---|
Nationwide | |||||
BI | 0.028*** | 0.008 | 0.013 | 1.028*** | [1.008, 1.047] |
Pop._Den. | 0.001** | 0.000 | 0.0005 | 1.000*** | [0.999, 1.001] |
Constant | −2.015*** | 0.049 | |||
Southern | |||||
BI | 0.075*** | 0.009 | 0.016 | 1.077*** | [1.056, 1.097] |
Pop._Den. | 0.001 | 0.000 | 0.0002 | 1.001*** | [0.998, 1.002] |
Constant | −2.515*** | 0.174 |
Scenarios | Year | Nationwide | Southern | ||||||
---|---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | ||
Temperature Change Projection | 2021–2040 | 0.63 (2.69%) | 0.67 (2.86%) | 0.61 (2.60%) | 0.77 (3.28%) | 0.62 (2.44%) | 0.66 (2.59%) | 0.66 (2.59%) | 0.76 (2.99%) |
2041–2060 | 0.92 (3.92%) | 1.14 (4.86%) | 0.93 (3.96%) | 1.48 (6.31%) | 0.90 (3.54%) | 1.13 (4.44%) | 0.92 (3.62%) | 1.46 (5.74%) | |
2061–2080 | 0.87 (3.71%) | 1.43 (6.10%) | 1.42 (6.05%) | 2.30 (9.81%) | 0.86 (3.38%) | 1.41 (5.54%) | 1.40 (5.50%) | 2.27 (8.92%) | |
2081–2100 | 0.77 (3.28%) | 1.54 (6.57%) | 1.94 (8.27%) | 3.08 (13.1%) | 0.76 (2.99%) | 1.52 (5.98%) | 1.91 (7.51%) | 3.03 (11.9%) | |
Change in Expected Value of BI | 2021–2040 | 0.05 | 0.06 | 0.05 | 0.07 | 0.18 | 0.19 | 0.18 | 0.22 |
2041–2060 | 0.08 | 0.10 | 0.08 | 0.13 | 0.26 | 0.33 | 0.26 | 0.42 | |
2061–2080 | 0.08 | 0.12 | 0.12 | 0.20 | 0.25 | 0.41 | 0.40 | 1.42 | |
2081–2100 | 0.07 | 0.13 | 0.17 | 0.27 | 0.22 | 0.44 | 1.19 | 1.89 | |
Percentage Change in BI | 2021–2040 | 3.63 | 3.86 | 3.51 | 4.44 | 5.13 | 5.46 | 5.13 | 6.29 |
2041–2060 | 5.30 | 6.57 | 5.36 | 8.53 | 7.45 | 9.35 | 7.61 | 12.08 | |
2061–2080 | 5.01 | 8.24 | 8.18 | 13.25 | 7.12 | 11.67 | 11.59 | 40.77 | |
2081–2100 | 4.44 | 8.87 | 11.18 | 17.75 | 6.29 | 12.58 | 34.30 | 54.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, B.-L.; Tseng, W.-C.; Chen, C.-C.; Liao, S.-Y. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 1392. https://doi.org/10.3390/ijerph17041392
Tran B-L, Tseng W-C, Chen C-C, Liao S-Y. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(4):1392. https://doi.org/10.3390/ijerph17041392
Chicago/Turabian StyleTran, Bao-Linh, Wei-Chun Tseng, Chi-Chung Chen, and Shu-Yi Liao. 2020. "Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan" International Journal of Environmental Research and Public Health 17, no. 4: 1392. https://doi.org/10.3390/ijerph17041392
APA StyleTran, B.-L., Tseng, W.-C., Chen, C.-C., & Liao, S.-Y. (2020). Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. International Journal of Environmental Research and Public Health, 17(4), 1392. https://doi.org/10.3390/ijerph17041392