Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Lonn, M.E.; Dennis, J.M.; Stocker, R. Actions of “antioxidants” in the protection against atherosclerosis. Free Radic. Biol. Med. 2012, 53, 863–884. [Google Scholar] [CrossRef]
- Schutte, R.; Schutte, A.E.; Huisman, H.W.; van Rooyen, J.M.; Malan, N.T.; Péter, S.; Fourie, C.M.T.; van der Westhuizen, F.H.; Louw, R.; Botha, C.A.; et al. Blood glutathione and subclinical atherosclerosis in African men: The SABPA Study. Am. J. Hypertens. 2009, 22, 1154–1159. [Google Scholar] [CrossRef] [Green Version]
- Ndrepepa, G.; Colleran, R.; Kastrati, A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin. Chim. Acta 2018, 476, 130–138. [Google Scholar] [CrossRef]
- Mao, Y.; Qi, X.; Xu, W.; Song, H.; Xu, M.; Ma, W.; Zhou, L. Serum gamma-glutamyl transferase: A novel biomarker for coronary artery disease. Med. Sci. Monit. 2014, 20, 706–710. [Google Scholar]
- Sheikh, M.; Tajdini, M.; Shafiee, A.; Anvari, M.S.; Jalali, A.; Poorhosseini, H.; Amirzadegan, A. Association of serum gamma-glutamyltransferase and premature coronary artery disease. Neth. Heart J. 2017, 25, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Celik, O.; Cakmak, H.A.; Satilmis, S.; Gungor, B.; Akin, F.; Ozturk, D.; Yalcin, A.A.; Ayca, B.; Erturk, M.; Atasoy, M.M.; et al. The relationship between gamma-glutamyl transferase levels and coronary plaque burdens and plaque structures in young adults with coronary atherosclerosis. Clin. Cardiol. 2014, 37, 552–557. [Google Scholar]
- Pucci, A.; Franzini, M.; Matteucci, M.; Ceragioli, S.; Marconi, M.; Ferrari, M.; Passino, C.; Basolo, F.; Emdin, M.; Paolicchi, A. b-Gamma-glutamyltransferase activity in human vulnerable carotid plaques. Atherosclerosis 2014, 237, 307–313. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Pike, J.W.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815–843. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tousoulis, D.; Oikonomou, E.; Maniatis, K.; Kioufis, S.; Kokkou, E.; Miliou, A.; Zaromitidou, M.; Kassi, E.; Stefenadis, C. Vitamin D serum levels are associated with cardiovascular outcome in coronary artery disease. Int. J. Cardiol. 2013, 168, 4445–4447. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D. Vitamin D deficiency and cardiovascular disease: Fact or fiction? Hell. J. Cardiol. 2018, 59, 69–71. [Google Scholar] [CrossRef]
- Lavie, C.J.; Lee, J.H.; Milani, R.V. Vitamin D and cardiovascular disease will it live up to its hype? J. Am. Coll. Cardiol. 2011, 58, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.H.; Lavie, C.J.; Holick, M.F. Vitamin D supplementation for cardiovascular disease prevention. JAMA 2011, 306, 1546–1547. [Google Scholar] [CrossRef]
- Elangovan, H.; Chahal, S.; Gunton, J.E. Vitamin D in liver disease: Current evidence and potential directions. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 4, 907–916. [Google Scholar] [CrossRef]
- Korzonek-Szlacheta, I.; Hudzik, B.; Nowak, J.; Szkodziński, J.; Nowak, J.; Gąsior, M.; Zubelewicz-Szkodzińska, B. Mean platelet volume is associated with serum 25-hydroxyvitamin D concentrations in patients with stable coronary artery disease. Heart Vessel. 2018, 33, 1275–1281. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgatdo, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [Green Version]
- Boettger, S.F.; Angersbach, B.; Klimek, C.N.; Wanderley, A.L.M.; Shaibekov, A.; Sieske, L.; Wang, B.; Zuchowski, M.; Wirth, R.; Pourhassan, M. Prevalence and predictors of vitamin D-deficiency in frail older hospitalized patients. BMC Geriatr. 2018, 18, 219. [Google Scholar] [CrossRef]
- Spoto, B.; Mattace-Raso, F.; Sijbrands, E.J.; D’Arrigo, G.; Tripepi, G.; Volpato, S.; Bandinelli, S.; Ferrucci, L.; Zoccali, C. Oxidized LDL, Gamma-Glutamyltransferase and Adverse Outcomes in Older Adults. J. Am. Geriatr Soc. 2017, 65, e77–e82. [Google Scholar] [CrossRef] [Green Version]
- Cumhur Cure, M.; Cure, E.; Yuce, S.; Yazici, T.; Karakoyun, I.; Efe, H. Mean platelet volume and vitamin D level. Ann. Lab. Med. 2014, 34, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolicchi, A.; Emdin, M.; Ghliozeni, E.; Ciancia, E.; Passino, C.; Popoff, G.; Pompella, A. Images in cardiovascular medicine. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation 2004, 109, 1440. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001, 38, 263–355. [Google Scholar] [CrossRef]
- Bo, S.; Gambino, R.; Durazzo, M.; Guidi, S.; Tiozzo, E.; Ghione, F.; Gentile, L.; Cassader, M.; Pagano, G.F. Associations between gamma-glutamyl transferase, metabolic abnormalities and inflammation in healthy subjects from a population-based cohort: A possible implication for oxidative stress. World J. Gastroenterol. 2005, 11, 7109–7117. [Google Scholar] [CrossRef]
- Emdin, M.; Pompella, A.; Paolicchi, A. Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: Triggering oxidative stress within the plaque. Circulation 2005, 112, 2078–2080. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, G.; Ebrahim, S.; Shaper, A.G. Gamma-glutamyltransferase: Determinants and association with mortality from ischemic heart disease and all causes. Am. J. Epidemiol. 1995, 142, 699–708. [Google Scholar] [CrossRef]
- Karp, D.R.; Shimooku, K.; Lipsky, P.E. Expression of gamma-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death. J. Biol. Chem. 2001, 276, 3798–3804. [Google Scholar] [CrossRef] [Green Version]
- Demircan, S.; Yazici, M.; Durna, K.; Kilicaslan, F.; Demir, S.; Pinar, M.; Gulel, O. The importance of gamma-glutamyltransferase activity in patients with coronary artery disease. Clin. Cardiol. 2009, 32, 220–225. [Google Scholar] [CrossRef]
- Emdin, M.; Passino, C.; Michelassi, C.; Titta, F.; L’abbate, A.; Donato, L.; Pompella, A.; Paolicchi, A. Prognostic value of serum gamma-glutamyl transferase activity after myocardial infarction. Eur. Heart J. 2001, 22, 1802–1807. [Google Scholar] [CrossRef] [Green Version]
- Akpek, M.; Elcik, D.; Kalay, N.; Yarlioglues, M.; Dogdu, O.; Sahin, O.; Ardic, I.; Oguzhan, A.; Ergin, A.; Kaya, M.K. The prognostic value of serum gamma glutamyl transferase activity on admission in patients with STEMI undergoing primary PCI. Angiology 2012, 63, 579–585. [Google Scholar] [CrossRef]
- Dogan, A.; Icli, A.; Aksoy, F.; Varol, E.; Erdogan, D.; Ozaydin, M.; Kocyigit, S. Gamma-glutamyltransferase in acute coronary syndrome patients without ST elevation and its association with stenotic lesion and cardiac events. Coron. Artery Dis. 2012, 23, 39–44. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, J.; Liu, X.; Wu, Y.; Yang, Y.; Li, W.; Lv, W.; Hu, Y. Gamma-Glutamyltransferase and Risk of Acute Coronary Syndrome in Young Chinese Patients: A Case-Control Study. Dis. Markers 2018, 2018, 2429160. [Google Scholar] [CrossRef]
- Carvalho, L.S.; Sposito, A.C. Vitamin D for the prevention of cardiovascular disease: Are we ready for that? Atherosclerosis 2015, 241, 729–740. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grubler, M.R.; Tomaschitz, A.; Marz, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 13, 404–417. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.T.; Camargo, C.A., Jr. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Barchetta, I.; Angelico, F.; Del Ben, M.; Baroni, M.G.; Pozzilli, P.; Morini, S.; Cavallo, M.G. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011, 9, 85. [Google Scholar] [CrossRef]
- He, X.; Xu, C.; Lu, Z.H.; Fang, X.Z.; Tan, J.; Song, Y. Low serum 25-hydroxyvitamin D levels are associated with liver injury markers in the US adult population. Public Health Nutr. 2020, 23, 2915–2922. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Cavallo, M.G. Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future. Nutrients 2017, 9, 1015. [Google Scholar] [CrossRef] [Green Version]
- Barchetta, I.; Del Ben, M.; Angelico, F.; Martino, M.D.; Fraioli, A.; Torre, G.L.; Saulle, R.; Perri, L.; Morini, S.; Tiberti, C.; et al. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. BMC Med. 2016, 14, 92. [Google Scholar] [CrossRef]
- Naderpoor, N.; Mousa, A.; de Courten, M.; Scradd, R.; de Courten, B. The relationship between 25-hydroxyvitamin D concentration and liver enzymes in overweight or obese adults: Cross-sectional and interventional outcomes. J. Steroid Biochem. Mol. Biol. 2018, 177, 193–199. [Google Scholar] [CrossRef]
- Dabbaghmanesh, M.H.; Danafar, F.; Eshraghian, A.; Omrani, G.R. Vitamin D supplementation for the treatment of non-alcoholic fatty liver disease: A randomized double blind placebo controlled trial. Diabetes Metab. Syndr. 2018, 12, 513–517. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Cavallo, M.G. Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients 2020, 12, 3302. [Google Scholar] [CrossRef]
- Asrih, M.; Jornayvaz, F.R. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J. Endocrinol. 2013, 218, R25–R36. [Google Scholar] [CrossRef]
- Braunersreuther, V.; Viviani, G.L.; Mach, F.; Montecucco, F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J. Gastroenterol. 2012, 18, 727–735. [Google Scholar] [CrossRef]
- Cannell, J.J.; Grant, W.B.; Holick, M.F. Vitamin D and inflammation. Dermatoendocrinology 2014, 6, e983401. [Google Scholar] [CrossRef] [Green Version]
- Mangin, M.; Sinha, R.; Fincher, K. Inflammation and vitamin D: The infection connection. Inflamm. Res. 2014, 63, 803–819. [Google Scholar] [CrossRef] [Green Version]
Group 1 25(OH)D < 10 ng/mL n = 59 | Group 2 25(OH)D 10–20 ng/mL n = 82 | Group 3 25(OH)D > 20 ng/mL n = 28 | p | |
---|---|---|---|---|
Age, years | 77 (68–85) | 76 (67–87) | 75 (70–80) | 0.1 |
Sex, men n (%) | 13 (22.0) | 35 (42.7) | 10 (35.7) | 0.0001 |
Arterial hypertension n (%) | 42 (71.2) | 69 (84.1) | 24 (86.0) | 0.6 |
Hyperlipidemia n (%) | 37 (63.0) | 48 (58.5) | 16 (57.1) | 0.8 |
Diabetes mellitus n (%) | 16 (27.1) | 23 (28.0) | 11 (63.3) | 0.4 |
Prior myocardial infarction n (%) | 3 (5.1) | 15 (18.3) | 8 (39.2) | 0.5 |
BMI | 25 (23–28) | 29 (24–31) | 27 (24–30) | 0.1 |
Group 1 25(OH)D < 10 ng/mL n = 59 | Group 2 25(OH)D 10–20 ng/mL n = 82 | Group 3 25(OH)D > 20 ng/mL n = 28 | p | |
---|---|---|---|---|
Leucocytes (103/mm3) | 6.4 (4.8–8.6) | 6.8 (5.5–8.4) | 6.1 (4.7–6.7) | 0.1 |
Erythrocytes (106/mm3) | 4.1 (3.8–4.6) | 4.3 (3.9–4.5) | 4.1 (3.9–4.3) | 0.5 |
Lymphocytes (103/mm3) | 2.0 (1.5–3.0) | 2.3 (2.0–3.1) | 2.0 (1.9–2.4) | 0.7 |
Neutrophils (103/mm3) | 4.0 (2.6–5.3) | 3.8 (3.0–4.8) | 2.7 (2.2–3.9) | 0.04 |
Hemoglobin (g/dL) | 12.6 (12.1–13.8) | 12.7 (11.7–13.4) | 12.4 (11.3–13.1) | 0.2 |
Hematocrit (%) | 38 (36–42) | 39 (36–41) | 38 (37–39) | 0.3 |
Platelets (103/mm3) | 220 (173–262) | 205 (168–248) | 225 (204–277) | 0.1 |
Total cholesterol (mmol/L) | 4.3 (3.8–5.5) | 4.4 (3.5–5.3) | 4.3 (3.7–5.1) | 0.7 |
HDL cholesterol (mmol/L) | 1.5 (1.0–1.9) | 1.5 (1.2–1.7) | 1.2 (1.1–1.3) | 0.1 |
LDL cholesterol (mmol/L) | 2.3 (1.3–3.6) | 2.6 (1.7–3.3) | 2.5 (1.8–3.2) | 0.8 |
Triglycerides (mmol/L) | 1.0 (0.9–1.4) | 1.1 (0.9–1.4) | 1.1 (0.9–1.9) | 0.8 |
Serum creatinine (μmol/L) | 70 (60–90) | 76 (66–100) | 75 (66–88) | 0.1 |
Aspartate aminotransferase (AST) (U/L) | 18 (15–20) | 18 (16–26) | 16 (14–19) | 0.1 |
Alanine aminotransferase (ALT) (U/L) | 16 (10–22) | 15 (11–20) | 13 (11–17) | 0.4 |
Bilirubin (mmol/L) | 12.3 (9.5–18.1) | 9.7 (8.4–12.0) | 10.1 (8.2–13.5) | 0.08 |
GGT (U/L) | 27 (23–42) | 20 (17–40) | 16 (11–25) | 0.04 |
Total protein (g/L) | 60.9 (57.2–62.5) | 64.5 (56.0–67.3) | 62.1 (58.0–64.7) | 0.07 |
Albumin (mg/mL) | 36 (32–38) | 37 (31–39) | 42 (38–46) | 0.04 |
25(OH)D (ng/mL) | 8.4 (7.1–9.3) | 13.4 (12.1–15.8) | 23.4 (21.3–25.2) | <0.001 |
Gamma Glutamyltransferase | ||
---|---|---|
Spearman R | p | |
Weight | 0.20 | 0.008 |
Waist-to-hip ratio | 0.20 | 0.008 |
Waist-to-height ratio | 0.15 | 0.04 |
25(OH)D | −0.23 | 0.002 |
HDL cholesterol | −0.24 | 0.002 |
Alanine aminotransferase (ALT) | 0.26 | 0.0005 |
Bilirubin | 0.25 | 0.0002 |
Hemoglobin | 0.20 | 0.01 |
Leukocytes | 0.23 | 0.003 |
Neutrophils | 0.22 | 0.004 |
Lymphocytes | −0.15 | 0.05 |
Cut-Off | AUC | 95% CI | Sensitivity | Specificity | PPV | NPV | p | |
---|---|---|---|---|---|---|---|---|
Vitamin D Deficiency | ||||||||
GGT | >19 | 0.69 | 0.53–0.77 | 63% | 64% | 88% | 28% | 0.04 |
Severe Vitamin D Deficiency | ||||||||
GGT | >21 | 0.63 | 0.51–0.74 | 81% | 56% | 41% | 86% | 0.04 |
GGT ≤ 19 (n = 66) | GGT > 19 (n = 103) | p | |
---|---|---|---|
Age, years | 77 (65–85) | 77 (68–82) | 0.6 |
Sex, men n (%) | 23 (34.8) | 35 (34.0) | 0.9 |
Systemic hypertension n (%) | 51 (77.2) | 84 (81.5) | 0.7 |
Hyperlipidemia n (%) | 40 (60.6) | 61 (59.2) | 0.5 |
Diabetes mellitus n (%) | 17 (25.7) | 33 (32.0) | 0.2 |
Prior myocardial infarction n (%) | 10 (15.2) | 16 (15.5) | 0.9 |
BMI | 26 (23–30) | 27 (24–31) | 0.4 |
Leucocytes (103/mm3) | 5.7 (5.1–7.0) | 7.0 (5.6–8.9) | 0.01 |
Erythrocytes (106/mm3) | 4.2 (3.9–4.4) | 4.2 (3.9–4.7) | 0.6 |
Lymphocytes (103/mm3) | 2.1 (1.9–2.6) | 2.2 (1.8–3.0) | 0.4 |
Neutrophils (103/mm3) | 3.1 (2.5–4.6) | 4.0 (2.9–5.5) | 0.01 |
Hemoglobin (g/dL) | 12.4 (11.6–13.1) | 12.7 (12.0–13.8) | 0.2 |
Hematocrit (%) | 38 (36–40) | 39 (37–42) | 0.2 |
Platelets (103/mm3) | 216 (190–253) | 209 (160–279) | 0.2 |
Total cholesterol (mmol/L) | 4.4 (3.5–5.4) | 4.4 (3.7–5.4) | 0.7 |
HDL cholesterol (mmol/L) | 1.5 (1.2–1.7) | 1.3 (1.0–1.8) | 0.1 |
LDL cholesterol (mmol/L) | 2.5 (1.7–3.4) | 2.5 (1.6–3.2) | 0.7 |
Triglycerides (mmol/L) | 1.0 (0.9–1.4) | 1.1 (1.0–1.6) | 0.7 |
Serum creatinine (μmol/L) | 73 (65–91) | 75 (62–92) | 0.7 |
Aspartate aminotransferase (AST) (U/L) | 18 (16–20) | 18 (15–23) | 0.8 |
Alanine aminotransferase (ALT) (U/L) | 14 (11–16) | 17 (11–22) | 0.02 |
Bilirubin (mmol/L) | 9.9 (8.2–11.1) | 10.90 (8.4–19.2) | 0.02 |
Total protein (g/L) | 60.5 (57.3–64.0) | 60.9 (58.0–68.4) | 0.7 |
Albumin (mg/mL) | 34 (33–38) | 34 (31–38) | 0.2 |
25(OH)D (ng/mL) | 13.8 (11.0 –21.0) | 10.9 (8.4–15.2) | 0.0001 |
• Vitamin D insufficiency (25(OH)D 20–30 ng/mL) n (%) | 10 (15.2) | 18 (17.1) | |
• Moderate vitamin D deficiency (25(OH)D 10–20 ng/mL) | 38 (57.7) | 44 (42.7) | 0.0002 |
• Severe vitamin D deficiency (25(OH)D < 10 ng/mL) n (%) | 18 (27.1) | 41 (39.8) |
25[OH]D Serum Level < 30 ng/mL, Odds Ratio (95% Confidence Intervals), p-Value | ||
---|---|---|
Unadjusted Model 1 Model 2 | 1.07 (1.02–1.11) 1.06 (1.02–1.12) 1.05 (1.01–1.11) | 0.004 0.01 0.04 |
Model 1, adjusted for age, sex, weight, waist circumference Model 2 adjusted for age, sex, weight, waist circumference, serum albumin, neutrophil count, ALT, serum bilirubin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danikiewicz, A.; Hudzik, B.; Nowak, J.; Kowalska, J.; Zieleń-Zynek, I.; Szkodzinski, J.; Naung Tun, H.; Zubelewicz-Szkodzinska, B. Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease. Int. J. Environ. Res. Public Health 2020, 17, 8980. https://doi.org/10.3390/ijerph17238980
Danikiewicz A, Hudzik B, Nowak J, Kowalska J, Zieleń-Zynek I, Szkodzinski J, Naung Tun H, Zubelewicz-Szkodzinska B. Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease. International Journal of Environmental Research and Public Health. 2020; 17(23):8980. https://doi.org/10.3390/ijerph17238980
Chicago/Turabian StyleDanikiewicz, Aleksander, Bartosz Hudzik, Justyna Nowak, Joanna Kowalska, Iwona Zieleń-Zynek, Janusz Szkodzinski, Han Naung Tun, and Barbara Zubelewicz-Szkodzinska. 2020. "Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease" International Journal of Environmental Research and Public Health 17, no. 23: 8980. https://doi.org/10.3390/ijerph17238980
APA StyleDanikiewicz, A., Hudzik, B., Nowak, J., Kowalska, J., Zieleń-Zynek, I., Szkodzinski, J., Naung Tun, H., & Zubelewicz-Szkodzinska, B. (2020). Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease. International Journal of Environmental Research and Public Health, 17(23), 8980. https://doi.org/10.3390/ijerph17238980