A Network Perspective on the Relationship between Screen Time, Executive Function, and Fundamental Motor Skills among Preschoolers
Abstract
:1. Introduction
2. Methods
2.1. Study Description
2.2. Participants and Context
2.3. Study Design
2.4. Variables and Protocols
2.4.1. Anthropometric Measures
2.4.2. Screen Time
2.4.3. Fundamental Motor Skills
2.4.4. Executive Function
2.5. Statistical Procedures
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wu, M.; Liang, X.; Lu, S.; Wang, Z. Infant motor and cognitive abilities and subsequent executive function. Infant Behav. Dev. 2017, 49, 204–213. [Google Scholar] [CrossRef]
- Bell, M.A.; Cuevas, K. Psychobiology of executive function in early development. In Executive Function in Preschool-Age Children: Integrating Measurement, Neurodevelopment, and Translational Research; American Psychological Association: Washington, DC, USA, 2015; pp. 157–179. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.M. The Prefrontal Cortex, 5th ed.; Academic Press: London, UK, 2015. [Google Scholar]
- Cao, M.; Huang, H.; He, Y. Developmental Connectomics from Infancy through Early Childhood. Trends Neurosci. 2017, 40, 494–506. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Blair, C.B.; Kuhn, L.J.; Magnus, B.E. The benefits of adding a brief measure of simple reaction time to the assessment of executive function skills in early childhood. J. Exp. Child Psychol. 2018, 170, 30–44. [Google Scholar] [CrossRef]
- Willoughby, M.; Hong, Y.; Hudson, K.; Wylie, A. Between- and within-person contributions of simple reaction time to executive function skills in early childhood. J. Exp. Child Psychol. 2020, 192, 104779. [Google Scholar] [CrossRef]
- Garon, N.; Bryson, S.E.; Smith, I.M. Executive function in preschoolers: A review using an integrative framework. Psychol. Bull. 2008, 134, 31–60. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Why improving and assessing executive functions early in life is critical. In Executive Function in Preschool-Age Children: Integrating Measurement, Neurodevelopment, and Translational Research; American Psychological Association (APA): Washington, DC, USA, 2016; pp. 11–43. [Google Scholar]
- Camerota, M.; Willoughby, M.T.; Magnus, B.E.; Blair, C.B. Leveraging item accuracy and reaction time to improve measurement of child executive function ability. Psychol. Assess. 2020. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Rigoli, D.; Piek, J.P.; Kane, R.; Oosterlaan, J. An examination of the relationship between motor coordination and executive functions in adolescents. Dev. Med. Child Neurol. 2012, 54, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- Stöckel, T.; Hughes, C.M.L. The relation between measures of cognitive and motor functioning in 5- to 6-year-old children. Psychol. Res. 2016, 80, 543–554. [Google Scholar] [CrossRef]
- Roebers, C.M.; Kauer, M. Motor and cognitive control in a normative sample of 7-year-olds. Dev. Sci. 2009, 12, 175–181. [Google Scholar] [CrossRef]
- Walker, A.K.; MacPhee, D. How home gets to school: Parental control strategies predict children’s school readiness. Early Child. Res. Q. 2011, 26, 355–364. [Google Scholar] [CrossRef]
- Lawson, G.M.; Hook, C.J.; Farah, M.J. A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Dev. Sci. 2018, 21, e12529. [Google Scholar] [CrossRef]
- Tandon, P.S.; Klein, M.; Saelens, B.E.; Christakis, D.A.; Marchese, A.J.; Lengua, L. Short term impact of physical activity vs. sedentary behavior on preschoolers’ cognitive functions. Ment. Health Phys. Act. 2018, 15, 17–21. [Google Scholar] [CrossRef]
- Willumsen, J.; Bull, F. Development of WHO Guidelines on Physical Activity, Sedentary Behavior, and Sleep for Children Less Than 5 Years of Age. J. Phys. Act. Health 2020, 17, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P.; Colley, R.C.; Aubert, S.; Carson, V.; Janssen, I.; Roberts, K.C.; Tremblay, M.S. Proportion of preschool-aged children meeting the Canadian 24-Hour Movement Guidelines and associations with adiposity: Results from the Canadian Health Measures Survey. BMC Public Health 2017, 17, 829. [Google Scholar] [CrossRef] [Green Version]
- Cliff, D.P.; McNeill, J.; Vella, S.A.; Howard, S.J.; Santos, R.; Batterham, M.; Melhuish, E.; Okely, A.D.; De Rosnay, M. Adherence to 24-Hour Movement Guidelines for the Early Years and associations with social-cognitive development among Australian preschool children. BMC Public Health 2017, 17, 207–215. [Google Scholar] [CrossRef] [Green Version]
- De Craemer, M.; McGregor, D.; Androutsos, O.; Manios, Y.; Cardon, G. Compliance with 24-h movement behaviour guidelines among belgian pre-school children: The toybox-study. Int. J. Environ. Res. Public Health 2018, 15, 2171. [Google Scholar] [CrossRef] [Green Version]
- Horowitz-Kraus, T.; Hutton, J.S. Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatr. 2018, 107, 685–693. [Google Scholar] [CrossRef]
- Paulus, M.P.; Squeglia, L.M.; Bagot, K.; Jacobus, J.; Kuplicki, R.; Breslin, F.J.; Bodurka, J.; Morris, A.S.; Thompson, W.K.; Bartsch, H.; et al. Screen media activity and brain structure in youth: Evidence for diverse structural correlation networks from the ABCD study. Neuroimage 2019, 185, 140–153. [Google Scholar] [CrossRef]
- Hutton, J.S.; Dudley, J.; Horowitz-Kraus, T.; Dewitt, T.; Holland, S.K. Associations between Screen-Based Media Use and Brain White Matter Integrity in Preschool-Aged Children. JAMA Pediatr. 2020, 174, e193869. [Google Scholar] [CrossRef] [Green Version]
- Christakis, D.A.; Zimmerman, F.J.; DiGiuseppe, D.L.; McCarty, C.A. Early Television Exposure and Subsequent Attentional Problems in Children. Pediatrics 2004, 113, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.G.; Cohen, P.; Kasen, S.; Brook, J.S. Extensive television viewing and the development of attention and learning difficulties during adolescence. Arch. Pediatr. Adolesc. Med. 2007, 161, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Webster, E.K.; Martin, C.K.; Staiano, A.E. Fundamental motor skills, screen-time, and physical activity in preschoolers. J. Sport Health Sci. 2019, 8, 114–121. [Google Scholar] [CrossRef]
- Petrella, J.R. Use of Graph Theory to Evaluate Brain Networks: A Clinical Tool for a Small World? Radiology 2011, 259, 317–320. [Google Scholar] [CrossRef]
- Telesford, Q.K.; Simpson, S.L.; Burdette, J.H.; Hayasaka, S.; Laurienti, P.J. The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain. Brain Connect. 2011, 1, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Hevey, D. Network analysis: A brief overview and tutorial. Heal. Psychol. Behav. Med. 2018, 6, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Grube, R.; Janson, K.; et al. Canadian 24-h movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef]
- Ulrich, D. TGMD 2-Test of Gross Motor Development Examiner’s Manual; PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Valentini, N.C. Validity and reliability of the TGMD-2 for Brazilian children. J. Mot. Behav. 2012, 44, 275–280. [Google Scholar] [CrossRef]
- Howard, S.J.; Melhuish, E. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms. J. Psychoeduc. Assess. 2017, 35, 255–275. [Google Scholar] [CrossRef]
- Karr, J.E.; Areshenkoff, C.N.; Rast, P.; Hofer, S.M.; Iverson, G.L.; Garcia-Barrera, M.A. The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychol. Bull. 2018, 144, 1147–1185. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willoughby, M.T.; Blair, C.B.; Wirth, R.J.; Greenberg, M. The measurement of executive function at age 5: Psychometric properties and relationship to academic achievement. Psychol. Assess. 2012, 24, 226–239. [Google Scholar] [CrossRef] [PubMed]
- St. John, A.M.; Finch, K.; Tarullo, A.R. Socioeconomic status and neural processing of a go/no-go task in preschoolers: An assessment of the P3b. Dev. Cogn. Neurosci. 2019, 38, 100677. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Anderson, A.; Thurm, A.; Shaw, P.; Maeda, M.; Chowdhry, F.; Chernomordik, V.; Gandjbakhche, A. Prefrontal Activation During Executive Tasks Emerges Over Early Childhood: Evidence From Functional Near Infrared Spectroscopy. Dev. Neuropsychol. 2017, 42, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2rd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 2013. [Google Scholar]
- Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Foygel, R.; Drton, M. Extended Bayesian Information Criteria for Gaussian Graphical Models. In Advances in Neural Information Processing Systems 23 (NIPS 2010), Proceedings of 24th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–11 December 2010; Neural Information Processing Systems Foundation, Inc.: Montreal, QC, Canada, 2011. [Google Scholar]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. Qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Leisman, G.; Moustafa, A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Vale, S.; Mota, J. Adherence to 24-h movement guidelines among Portuguese preschool children: The prestyle study. J. Sports Sci. 2020, 38, 1–6. [Google Scholar] [CrossRef]
- Hu, B.Y.; Johnson, G.K.; Wu, H. Screen time relationship of Chinese parents and their children. Child. Youth Serv. Rev. 2018, 94, 659–669. [Google Scholar] [CrossRef]
- Duch, H.; Fisher, E.M.; Ensari, I.; Harrington, A. Screen time use in children under 3 years old: A systematic review of correlates. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Rahman, A.; Carroll, D.J.; Espy, K.A.; Wiebe, S.A. Neural Correlates of Response Inhibition in Early Childhood: Evidence From a Go/No-Go Task. Dev. Neuropsychol. 2017, 42, 336–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Nettelbeck, T.; Barlow, J. Reaction time measures of speed of processing: Speed of response selection increases with age but speed of stimulus categorization does not. Br. J. Dev. Psychol. 1997, 15, 145–157. [Google Scholar] [CrossRef]
- Wiebe, S.A.; Sheffield, T.D.; Espy, K.A. Separating the Fish From the Sharks: A Longitudinal Study of Preschool Response Inhibition. Child Dev. 2012, 83, 1245–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, M.C.; Amso, D.; Anderson, L.C.; Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006, 44, 2037–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scantlebury, N.; Cunningham, T.; Dockstader, C.; Laughlin, S.; Gaetz, W.; Rockel, C.; Dickson, J.; Mabbott, D. Relations between white matter maturation and reaction time in childhood. J. Int. Neuropsychol. Soc. 2014, 20, 99–112. [Google Scholar] [CrossRef]
- Carlson, S.M.; Zayas, V.; Guthormsen, A. Neural correlates of decision making on a gambling task. Child Dev. 2009, 80, 1076–1096. [Google Scholar] [CrossRef]
- Tremolada, M.; Taverna, L.; Bonichini, S. Which factors influence attentional functions? Attention assessed by KITAP in 105 6-to-10-year-old children. Behav. Sci. (Basel) 2019, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, T.M. Gender and emotion expression: A developmental contextual perspective. Emot. Rev. 2015, 7, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Gender differences in motor skill proficiency from childhood to adolescence: A longitudinal study. Res. Q. Exerc. Sport 2010, 81, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Iivonen, S.; Sääkslahti, A.K. Preschool children’s fundamental motor skills: A review of significant determinants. Early Child Dev. Care 2014, 184, 1107–1126. [Google Scholar] [CrossRef]
- Reck, S.G.; Hund, A.M. Sustained attention and age predict inhibitory control during early childhood. J. Exp. Child Psychol. 2011, 108, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, K.; Bell, M.A. Infant Attention and Early Childhood Executive Function. Child Dev. 2014, 85, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigman, A. Time for a view on screen time. Arch. Dis. Child. 2012, 97, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadoret, G.; Bigras, N.; Lemay, L.; Lehrer, J.; Lemire, J. Relationship between screen-time and motor proficiency in children: A longitudinal study. Early Child Dev. Care 2018, 188, 231–239. [Google Scholar] [CrossRef]
- Stodden, D.F.; Langendorfer, S.J.; Goodway, J.D.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Radesky, J.S.; Silverstein, M.; Zuckerman, B.; Christakis, D.A. Infant self-regulation and early childhood media exposure. Pediatrics 2014, 133, e1172–e1178. [Google Scholar] [CrossRef] [Green Version]
- Tamana, S.K.; Ezeugwu, V.; Chikuma, J.; Lefebvre, D.L.; Azad, M.B.; Moraes, T.J.; Subbarao, P.; Becker, A.B.; Turvey, S.E.; Sears, M.R.; et al. Screen-time is associated with inattention problems in preschoolers: Results from the CHILD birth cohort study. PLoS ONE 2019, 14, e0213995. [Google Scholar] [CrossRef]
- Sweetser, P.; Johnson, D.; Ozdowska, A.; Wyeth, P. Active versus passive screen time for young children. Aust. J. Early Child. 2012, 37, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.M. An examination of touch screen tablets and emergent literacy in Australian pre-school children. Aust. J. Educ. 2014, 58, 109–122. [Google Scholar] [CrossRef]
- Byeon, H.; Hong, S. Relationship between Television Viewing and Language Delay in Toddlers: Evidence from a Korea National Cross-Sectional Survey. PLoS ONE 2015, 10, e0120663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.Y.; Cherng, R.J.; Chen, Y.J.; Chen, Y.J.; Yang, H.M. Effects of television exposure on developmental skills among young children. Infant Behav. Dev. 2015, 38, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.A.; Matson, P.A.; Ellen, J.M. Television viewing in low-income latino children: Variation by ethnic subgroup and english proficiency. Child. Obes. 2013, 9, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, P.H.; de Farias Júnior, J.C.; Florindo, A.A. Sedentary behavior in Brazilian children and adolescents: A systematic review. Rev. Saude Publica 2016, 50, 9. [Google Scholar] [CrossRef]
- Huber, B.; Yeates, M.; Meyer, D.; Fleckhammer, L.; Kaufman, J. The effects of screen media content on young children’s executive functioning. J. Exp. Child Psychol. 2018, 170, 72–85. [Google Scholar] [CrossRef]
- Lillard, A.S.; Peterson, J. The immediate impact of different types of television on young children’s executive function. Pediatrics 2011, 128, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Kuzik, N.; Hunter, S.; Wiebe, S.A.; Spence, J.C.; Friedman, A.; Tremblay, M.S.; Slater, L.G.; Hinkley, T. Systematic review of sedentary behavior and cognitive development in early childhood. Prev. Med. (Baltim) 2015, 78, 115–122. [Google Scholar] [CrossRef]
- Draper, C.; Tomaz, S.A.; Cook, C.J.; Jugdav, S.S.; Ramsammy, C.; Besharati, S.; Van Heerden, A.; Vilakazi, K.; Cockcroft, K.; Howard, S.J.; et al. Understanding the influence of 24-hour movement behaviours on the health and development of preschool children from low-income South African settings: The SUNRISE pilot study. S. Afr. J. Sport. Med. 2020, 32, 1–7. [Google Scholar] [CrossRef]
- Blair, C.; Raver, C.C. Child development in the context of adversity;Experiential canalization of brain and behavior. Am. Psychol. 2012, 67, 309–318. [Google Scholar] [CrossRef]
Variables | N (%) | |||
---|---|---|---|---|
Boys (n = 24) | Girls (n = 18) | Total (n = 42) | x2 (p) | |
Screen time (min/day) | ||||
Compliant | 1 (4.2) | 3 (16.7) | 4 (9.6) | 1.87(0.172) |
Noncompliant | 23 (95.8) | 15 (83.3) | 38 (90.4) | |
p (Cohen’s d) | ||||
Age (years) | 3.91 ± 0.77 | 3.55 ± 0.61 | 3.76 ± 0.72 | 0.112 (0.50) |
BMI | 15.43 ± 1.14 | 15.51 ± 2.04 | 15.47 ± 1.57 | 0.876 (−0.04) |
Locomotor | 26.33 ± 8.72 | 21.0 ± 7.77 | 24.05 ± 8.65 | 0.047 (0.64) |
Object control | 22.04 ± 7.45 | 17.11 ± 7.12 | 19.93 ± 7.63 | 0.037 (0.67) |
Ac-Go (score) | 53.25 ± 5.62 | 47.22 ± 11.18 | 50.67 ± 8.87 | 0.027 (0.71) |
RT-Go (ms) | 285 ± 0.32 | 301 ± 0.25 | 292 ± 0.30 | 0.083 (−0.55) |
Ac-No Go (score) | 9.37 ± 3.76 | 11.83 ± 2.55 | 10.42 ± 3.48 | 0.022 (−0.74) |
Variable | Network | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Screen time (1) | 0.00 | ||||||||
Sex (2) | 0.58 | 0.00 | |||||||
BMI (3) | −0.52 | 0.35 | 0.00 | ||||||
Locomotor (4) | −0.29 | 0.03 | −0.22 | 0.00 | |||||
Object control (5) | 0.14 | −0.22 | −0.07 | 0.45 | 0.00 | ||||
Ac-Go (6) | 0.33 | −0.49 | 0.33 | 0.08 | −0.25 | 0.00 | |||
RT-Go (7) | −0.04 | 0.11 | 0.05 | 0.13 | 0.04 | −0.42 | 0.00 | ||
Ac-No Go (8) | −0.26 | 0.54 | −0.29 | −0.05 | −0.14 | 0.27 | 0.12 | 0.00 | |
Age (9) | 0.25 | −0.29 | 0.17 | 0.29 | 0.28 | 0.09 | −0.01 | 0.44 | 0.00 |
Variable | Betweenness | Closeness | Strength |
---|---|---|---|
Age | 0.120 | −0.501 | −0.214 |
Screen time | −0.419 | 0.928 | 0.939 |
Sex | 0.659 | 1.740 | 1.354 |
BMI | 0.120 | −0.127 | 0.149 |
Locomotion | −0.419 | −0.702 | −0.734 |
Object control | 0.242 | −0.781 | −0.633 |
Ac-Go | 2.275 | 0.714 | 0.668 |
RT-Go | −0.958 | −1.479 | −1.919 |
Ac-No Go | −0.419 | 0.210 | 0.390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.M.d.L.; Bandeira, P.F.R.; Lemos, N.B.A.G.; Bezerra, T.A.; Clark, C.C.T.; Mota, J.; Duncan, M.J. A Network Perspective on the Relationship between Screen Time, Executive Function, and Fundamental Motor Skills among Preschoolers. Int. J. Environ. Res. Public Health 2020, 17, 8861. https://doi.org/10.3390/ijerph17238861
Martins CMdL, Bandeira PFR, Lemos NBAG, Bezerra TA, Clark CCT, Mota J, Duncan MJ. A Network Perspective on the Relationship between Screen Time, Executive Function, and Fundamental Motor Skills among Preschoolers. International Journal of Environmental Research and Public Health. 2020; 17(23):8861. https://doi.org/10.3390/ijerph17238861
Chicago/Turabian StyleMartins, Clarice Maria de Lucena, Paulo Felipe Ribeiro Bandeira, Natália Batista Albuquerque Goulart Lemos, Thaynã Alves Bezerra, Cain Craig Truman Clark, Jorge Mota, and Michael Joseph Duncan. 2020. "A Network Perspective on the Relationship between Screen Time, Executive Function, and Fundamental Motor Skills among Preschoolers" International Journal of Environmental Research and Public Health 17, no. 23: 8861. https://doi.org/10.3390/ijerph17238861