A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens
Abstract
:1. Introduction
2. VOC Transport Pathways
3. Remediation Concepts Relevant to VOCs in Urban Settings
4. Health in Post-Industrial Cities and VOCs: A Focus on Birth Outcomes
5. VOC-Induced Reproductive Health Outcomes in Animal Models
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hyde, C.K. “Detroit the Dynamic”: The industrial history of Detroit from cigars to cars. Mich. Hist. Rev. 2001, 27, 57. [Google Scholar] [CrossRef]
- Tabb, A. GLUE Founders Stay Put for Great Lakes Renaissance. Crain’s Detroit Business. 2009. Available online: https://www.crainsdetroit.com/article/20090108/DM01/901089973/glue-founders-stay-put-for-great-lakes-renaissance (accessed on 20 August 2020).
- Desjardins, J. The Great Lakes Economy: The Growth Engine of North America. Visual Capitalist. 2017. Available online: https://www.visualcapitalist.com/great-lakes-economy/ (accessed on 26 March 2020).
- National Oceanic and Atmospheric Administration (NOAA). Fast Facts—Great Lakes. 2020. Available online: https://www.coast.noaa.gov/states/fast-facts/great-lakes.html (accessed on 25 March 2020).
- American Society of Civil Engineers (ASCE). Michigan Infrastructure Report Card. 2018. Available online: https://www.infrastructurereportcard.org/state-item/michigan/ (accessed on 18 August 2020).
- Hanna-Attisha, M.; Lachance, J.; Sadler, R.C.; Schnepp, A.C. Elevated blood lead levels in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response. Am. J. Public Health 2016, 106, 283–290. [Google Scholar] [CrossRef]
- Zahran, S.; McElmurry, S.P.; Kilgore, P.E.; Mushinski, D.; Press, J.; Love, N.G.; Sadler, R.C.; Swanson, M.S. Assessment of the legionnaires’ disease outbreak in Flint, Michigan. Proc. Natl. Acad. Sci. USA 2018, 115, E1730–E1739. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McDonald, B.C.; De Gouw, J.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Porada, E.; Szyszkowicz, M. UNMIX methods applied to characterize sources of volatile organic compounds in Toronto, Ontario. Toxics 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chauhan, S.K.; Saini, N.; Yadav, V.B. Recent trends of volatile organic compounds in ambient air and its health impacts: A review. Int. J. Technol. Res. Eng. 2014, 1, 667. [Google Scholar]
- Hsu, C.-Y.; Chiang, H.-C.; Shie, R.-H.; Ku, C.-H.; Lin, T.-Y.; Chen, M.-J.; Chen, N.-T.; Chen, Y.-C. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef]
- Forand, S.P.; Lewis-Michl, E.L.; Gomez, M.I. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York state. Environ. Health Perspect. 2012, 120, 616–621. [Google Scholar] [CrossRef][Green Version]
- Ruckart, P.Z.; Bove, F.J.; Maslia, M.L. Evaluation of contaminated drinking water and preterm birth, small for gestational age, and birth weight at Marine Corps Base Camp Lejeune, North Carolina: A cross-sectional study. Environ. Health 2014, 13, 99. [Google Scholar] [CrossRef][Green Version]
- Chang, M.; Park, H.; Ha, M.-N.; Hong, Y.-C.; Lim, Y.-H.; Kim, Y.; Kim, Y.J.; Lee, D.; Ha, E.-H. The effect of prenatal TVOC exposure on birth and infantile weight: The mothers and children’s environmental health study. Pediatr. Res. 2017, 82, 423–428. [Google Scholar] [CrossRef]
- Cassidy-Bushrow, A.E.; Burmeister, C.; Lamerato, L.; Lemke, L.D.; Mathieu, M.; O’Leary, B.F.; Sperone, F.G.; Straughen, J.K.; Reiners, J.J. Prenatal airshed pollutants and preterm birth in an observational birth cohort study in Detroit, Michigan, USA. Environ. Res. 2020, 189, 109845. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.A.A.; Nascimento, L.F.C. Maternal exposure to benzene and toluene and preterm birth. A longitudinal study. Sao Paulo Med. J. 2019, 137, 486–490. [Google Scholar] [CrossRef] [PubMed]
- March of Dimes Report Card. 2019. Available online: https://www.marchofdimes.org/materials/MOD2019_REPORT_CARD_and_POLICY_ACTIONS_BOOKLETv72.pdf (accessed on 17 August 2020).
- U.S. Environmental Protection Agency (USEPA). Exposure Factors Handbook; U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, 1997. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=12464 (accessed on 21 October 2020).
- Agency for Toxic Substances and Disease Registry (ATSDR). Evaluating Vapor Intrusion Pathways. 2016. Available online: https://www.atsdr.cdc.gov/docs/svi_guidance_508.pdf (accessed on 21 October 2020).
- Interstate Technology and Regulatory Council (ITRC). Vapor Intrusion Pathway: A Practical Guideline. 2007. Available online: https://www.itrcweb.org/documents/vi-1.pdf (accessed on 21 October 2020).
- Johnston, J.E.; Gibson, J.M. Indoor air contamination from hazardous waste sites: Improving the evidence base for decision-making. Int. J. Environ. Res. Public Health 2015, 12, 15040–15057. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ma, J.; McHugh, T.; Beckley, L.; Lahvis, M.; DeVaull, G.; Jiang, L. Vapor intrusion investigations and decision-making: A critical review. Environ. Sci. Technol. 2020, 54, 7050–7069. [Google Scholar] [CrossRef]
- Turczynowicz, L.; Pisaniello, D.; Williamson, T. Health risk assessment and vapor intrusion: A review and australian perspective. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 984–1013. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M.; Bovo, C.; Sanchis-Gomar, F. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis 2020, 7, 85–90. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Addition of a Subsurface Intrusion Component to the Hazard Ranking System, 82 Fed. Reg. 5 (to be codified at 40 CFR Part 300). 2017. Available online: https://www.federalregister.gov/d/2016-30640 (accessed on 21 October 2020).
- Clay, K.R. Temporal Variation in Groundwater and VOC Flux through a Sandy Streambed, Wilson, NC. 2017. Available online: https://1library.net/document/qod194mz-temporal-variation-groundwater-sandy-streambed-wilson-north-carolina.html#fulltext-content (accessed on 21 October 2020).
- Johnston, J.E.; Gibson, J.M. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: A longitudinal, community-based study. J. Exp. Sci. Environ. Epidemiol. 2013, 24, 564–571. [Google Scholar] [CrossRef]
- Kaufman, M.M.; Rogers, D.T.; Murray, K.S. Using soil and contaminant properties to assess the potential for groundwater contamination to the lower Great Lakes, USA. Environ. Earth Sci. 2008, 56, 1009–1021. [Google Scholar] [CrossRef]
- Squillace, P.J.; Scott, J.C.; Moran, M.J.; Nolan, B.T.; Kolpin, D.W. VOCs, Pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States. Environ. Sci. Technol. 2002, 36, 1923–1930. [Google Scholar] [CrossRef][Green Version]
- Yu, S.; Lee, P.-K.; Hwang, S.-I. Groundwater contamination with volatile organic compounds in urban and industrial areas: Analysis of co-occurrence and land use effects. Environ. Earth Sci. 2015, 74, 3661–3677. [Google Scholar] [CrossRef]
- Pankow, J.F.; Cherry, J.A. Dense Chlorinated Solvents and Other Dnapls in Groundwater: History, Behavior, and Remediation. 1996. Available online: https://unversityconsortium.files.wordpress.com/2017/06/pankow_cherry_dnapl_book.pdf (accessed on 22 November 2020).
- Rivett, M.O.; Wealthall, G.P.; Dearden, R.A.; McAlary, T.A. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. J. Contam. Hydrol. 2011, 123, 130–156. [Google Scholar] [CrossRef] [PubMed]
- Zogorski, J.S.; Carter, J.M.; Ivahnenko, T.; Lapham, W.W.; Moran, M.J.; Rowe, B.L.; Squillace, P.J.; Toccalino, P.L. Volatile organic compounds in the nation’s ground water and drinking-water supply wells. Circular 2006, 1292, 101. [Google Scholar]
- Squillace, P.J.; Moran, M.J.; Price, C.V. VOCs in Shallow groundwater in new residential/commercial areas of the United States. Environ. Sci. Technol. 2004, 38, 5327–5338. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, R.; Pennell, K.G.; Suuberg, E.M. A review of vapor intrusion models. Environ. Sci. Technol. 2013, 47, 2457–2470. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chapman, S.W.; Parker, B.L.; Cherry, J.A.; Aravena, R.; Hunkeler, D. Groundwater–surface water interaction and its role on TCE groundwater plume attenuation. J. Contam. Hydrol. 2007, 91, 203–232. [Google Scholar] [CrossRef]
- McHugh, T.; Loll, P.; Eklund, B. Recent advances in vapor intrusion site investigations. J. Environ. Manag. 2017, 204, 783–792. [Google Scholar] [CrossRef]
- Mullaugh, K.M.; Hamilton, J.M.; Avery, G.B.; Felix, J.D.; Mead, R.N.; Willey, J.D.; Kieber, R.J. Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere 2015, 134, 203–209. [Google Scholar] [CrossRef]
- Sato, E.; Okochi, H.; Igawa, M. Determination of volatile organic compounds in rainwater and dew water by head space solid-phase microextraction and gas chromatography/mass spectrometry. Bunseki Kagaku 2010, 59, 551–557. [Google Scholar] [CrossRef][Green Version]
- Yu, S.; Lee, P.-K.; Yun, S.-T.; Hwang, S.-I.; Chae, G. Comparison of volatile organic compounds in stormwater and groundwater in Seoul metropolitan city, South Korea. Environ. Earth Sci. 2017, 76, 24. [Google Scholar] [CrossRef]
- Zahed, M.; Pardakhti, A.; Mohajeri, L.; Bateni, F. Wet deposition of hydrocarbons in the city of Tehran-Iran. Air Qual. Atmos. Health 2009, 3, 77–82. [Google Scholar] [CrossRef][Green Version]
- Beckley, L.; McHugh, T. A conceptual model for vapor intrusion from groundwater through sewer lines. Sci. Total Environ. 2019, 698, 134283. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Holton, C.; Luo, H.; Dahlen, P.; Gorder, K.; Dettenmaier, E.; Johnson, P.C. Identification of alternative vapor intrusion pathways using controlled pressure testing, soil gas monitoring, and screening model calculations. Environ. Sci. Technol. 2015, 49, 13472–13482. [Google Scholar] [CrossRef] [PubMed]
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). 2020. Available online: https://www.michigan.gov/egle/0,9429,7-135-3311_4109_8468100.html (accessed on 22 November 2020).
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). Research Correspondence on 19 November 2020; EGLE: Lansing, MI, USA, 2020. [Google Scholar]
- Loften, J. Industrial Site That Oozed Toxic ‘Green Goo’ onto Detroit Highway to Be Demolished. MLive. 2020. Available online: https://www.mlive.com/news/2020/03/industrial-site-that-oozed-toxic-green-ooze-onto-detroit-highway-to-be-demolished.html (accessed on 22 November 2020).
- Ohio Environmental Protection Agency. Sample Collection and Evaluation of Vapor Intrusion to Indoor Air: For Remedial Response, Resource Conservation and Recovery Act and Voluntary Action Programs. Division of Environmental Response and Revitalization. 2020. Available online: https://epa.ohio.gov/portals/30/vap/docs/VI guidance Final 3-6-2020.pdf (accessed on 22 November 2020).
- Batterman, S.; Duan, X.; Hatzivasilis, G. Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environ. Res. 2007, 104, 224–240. [Google Scholar] [CrossRef]
- Du, L.; Batterman, S.; Godwin, C.; Rowe, Z.; Chin, J.-Y. Air exchange rates and migration of VOCs in basements and residences. Indoor Air 2015, 25, 598–609. [Google Scholar] [CrossRef][Green Version]
- Michigan Department of Environmental Quality (MDEQ). Guidance Document for the Vapor Intrusion Pathway. 2013. Available online: https://www.michigan.gov/documents/deq/deq-rrd-VIGuidanceDoc-May2013_422550_7.pdf (accessed on 21 October 2020).
- U.S. Environmental Protection Agency (USEPA). OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA’s Final VI Guidance, OSWER Publication 9200.2-154. 2015. Available online: https://www.epa.gov/vaporintrusion/technical-guide-assessing-and-mitigating-vapor-intrusion-pathway-subsurface-vapor (accessed on 21 October 2020).
- U.S. Environmental Protection Agency (USEPA). Volatile Organic Compounds’ Impact on Indoor Air Quality. 2019. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 21 October 2020).
- Sampson, N.R.; Price, C.E.; Kassem, J.; Doan, J.; Hussein, J. “We’re Just Sitting Ducks”: Recurrent household flooding as an underreported environmental health threat in Detroit’s changing climate. Int. J. Environ. Res. Public Health 2018, 16, 6. [Google Scholar] [CrossRef][Green Version]
- SThorsby, J.S.; Miller, C.J.; Treemore-Spears, L. The role of green stormwater infrastructure in flood mitigation (Detroit, MI USA)—Case study. Urban Water J. 2020, 17, 838–846. [Google Scholar] [CrossRef]
- Salthammer, T.; Zhang, Y.; Mo, J.; Koch, H.M.; Weschler, C.J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angewandte Chemie Int. Ed. 2018, 57, 12228–12263. [Google Scholar] [CrossRef] [PubMed]
- Archer, N.P.; Bradford, C.M.; Villanacci, J.F.; Crain, N.E.; Corsi, R.L.; Chambers, D.M.; Burk, T.; Blount, B.C. Relationship between vapor intrusion and human exposure to trichloroethylene. J. Environ. Sci. Health Part A 2015, 50, 1360–1368. [Google Scholar] [CrossRef][Green Version]
- Holton, C.; Luo, H.; Dahlen, P.; Gorder, K.; Dettenmaier, E.; Johnson, P.C. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume. Environ. Sci. Technol. 2013, 47, 13347–13354. [Google Scholar] [CrossRef] [PubMed]
- Michigan Department of Environment Great Lakes and Energy (EGLE). Volatilization to Indoor Air Pathway for Environmental Professionals. 2020. Available online: https://www.michigan.gov/egle/0,9429,7-135-3311_4109_6633600.html (accessed on 5 May 2020).
- Miller, C.J. Groundwater monitoring. In The Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Shaad, K.; Burlando, P. Monitoring and modelling of shallow groundwater dynamics in urban context: The case study of Jakarta. J. Hydrol. 2019, 573, 1046–1056. [Google Scholar] [CrossRef]
- Yu, L.; Rozemeijer, J.C.; Van Der Velde, Y.; Van Breukelen, B.M.; Ouboter, M.; Broers, H.P. Urban hydrogeology: Transport routes and mixing of water and solutes in a groundwater influenced urban lowland catchment. Sci. Total Environ. 2019, 678, 288–300. [Google Scholar] [CrossRef] [PubMed]
- California State Water Resources Control Board. Vapor Intrusion. 2020. Available online: https://www.waterboards.ca.gov/water_issues/programs/site_cleanup_program/vapor_intrusion/ (accessed on 1 June 2020).
- Datry, T.; Malard, F.; Gibert, J. Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin. Sci. Total Environ. 2004, 329, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Voisin, J.; Cournoyer, B.; Vienney, A.; Mermillod-Blondin, F. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater. Sci. Total Environ. 2018, 637–638, 1496–1507. [Google Scholar] [CrossRef] [PubMed]
- Warner, K.L.; Ayotte, J.D. The quality of our Nation’s waters: Water quality in the glacial aquifer system, northern United States, 1993–2009. Circular 2015, 1352, 116. [Google Scholar]
- Guo, Y.; Holton, C.; Luo, H.; Dahlen, P.; Johnson, P.C. Influence of fluctuating groundwater table on volatile organic chemical emission flux at a dissolved chlorinated-solvent plume site. Ground Water Monit. Remediat. 2019, 39, 43–52. [Google Scholar] [CrossRef]
- Moran, M.J.; Zogorski, J.S.; Squillace, P.J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81. [Google Scholar] [CrossRef]
- O’Leary, B.F. Environmental Mapper. 2018. Available online: https://www.mcgi.state.mi.us/environmentalmapper/ (accessed on 21 October 2020).
- Holtschlag, D.J.; Nicholas, J. Indirect Ground-Water Discharge to the Great Lakes. Geol. Surv. 1998. [Google Scholar] [CrossRef]
- Howard, K.; Gerber, R. Impacts of urban areas and urban growth on groundwater in the Great Lakes Basin of North America. J. Great Lakes Res. 2018, 44, 1–13. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Vázquez-Suñé, E.; Sanchez-Vila, X.; Carrera, J. Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol. J. 2005, 13, 522–533. [Google Scholar] [CrossRef]
- Claessens, L.; Hopkinson, C.S.; Rastetter, E.B.; Vallino, J.J. Effect of historical changes in land use and climate on the water budget of an urbanizing watershed. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef][Green Version]
- Gessner, M.; Hinkelmann, R.; Nutzmann, G.; Jekel, M.; Singer, G.A.; Lewandowski, J.; Nehls, T.; Barjenbruch, M. Urban water interfaces. J. Hydrol. 2014, 514, 226–232. [Google Scholar] [CrossRef]
- Javadi, S.; Hashemy, S.; Mohammadi, K.; Howard, K.; Neshat, A. Classification of aquifer vulnerability using K-means cluster analysis. J. Hydrol. 2017, 549, 27–37. [Google Scholar] [CrossRef]
- Sharp, J. The Impacts of Urbanization on Groundwater Systems and Recharge. AQUA Mundi. 2010. [CrossRef]
- Wong, C.; Sharp, J.J.M.; Hauwert, N.; Landrum, J.; White, K.M. Impact of urban development on physical and chemical hydrogeology. Elements 2012, 8, 429–434. [Google Scholar] [CrossRef]
- O’Leary, B.F.; Teimoori, S.; Miller, C.J. Using an Urban Water Budget to Understand Urban Shallow Groundwater Processes for Sustainable Neighborhood Development. American Geophysical Union Fall Meeting. 2019. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFMGH13D1074O/abstract (accessed on 22 November 2020).
- Teimoori, S.; O’Leary, B.F.; Miller, C.J. Modeling shallow urban groundwater atregional and local scales: Case study in Detroit, MI. Water 2020. submitted. [Google Scholar]
- Teimoori, S.; O’Leary, B.F.; Miller, C.J. Conceptual Modeling of Shallow Urban Groundwater in the Detroit Region. American Geophysical Union Fall Meeting. 2019. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFM.H41M1883T/abstract (accessed on 21 October 2020).
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Poelsma, P.J.; James, R.B.; Burns, M.J. Where does infiltrated stormwater go? Interactions with vegetation and subsurface anthropogenic features. J. Hydrol. 2018, 567, 121–132. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R.; Steyn, D.G. Urban water balance: 1. A model for daily totals. Water Resour. Res. 1986, 22, 1397–1403. [Google Scholar] [CrossRef][Green Version]
- Clarke, B.G.; Magee, D.; Dimitrova, V.; Cohn, A.G.; Du, H.; Mahesar, Q.-A. A decision support system to proactively manage subsurface utilities. In Proceedings of the International Symposium for Next Generation Infrastructure 2017 Conference, London, UK, 11–13 September 2017; pp. 99–108. [Google Scholar]
- Peche, A.; Graf, T.; Fuchs, L.; Neuweiler, I. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil. J. Hydrol. 2017, 555, 569–585. [Google Scholar] [CrossRef]
- Peche, A.; Graf, T.; Fuchs, L.; Neuweiler, I. Physically based modeling of stormwater pipe leakage in an urban catchment. J. Hydrol. 2019, 573, 778–793. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X.; Brown, M. An ecohydrologic model for a shallow groundwater urban environment. Water Sci. Technol. 2014, 70, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Rauch, W.; Urich, C.; Bach, P.; Rogers, B.; De Haan, F.; Brown, R.; Mair, M.; McCarthy, D.; Kleidorfer, M.; Sitzenfrei, R.; et al. Modelling transitions in urban water systems. Water Res. 2017, 126, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Welty, C. The urban water budget. In The Water Environment of Cities; Springer Science and Business Media: Boston, MA, USA, 2009; pp. 17–28. [Google Scholar]
- Albanese, S.; Cicchella, D. Legacy problems in urban geochemistry. Elements 2012, 8, 423–428. [Google Scholar] [CrossRef][Green Version]
- Howard, J.; Dubay, B.R.; Daniels, W.L. Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan. Environ. Pollut. 2013, 179, 1–12. [Google Scholar] [CrossRef]
- Rogers, D.T. Environmental Geology of Metropolitan Detroit; Clayton Environmental Consultants, Inc.: Novi, MI, USA, 1996. [Google Scholar]
- Thomas, M.A. The effect of residential development on ground-water quality near Detroit, Michigan. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 1023–1038. [Google Scholar] [CrossRef]
- Wisler, C.O.; Stramel, G.; Laird, L.B. Water resources of the Detroit area, Michigan. Circular 1952. [Google Scholar] [CrossRef][Green Version]
- Mozola, A.J. A Survey of Ground-Water Resources in Oakland County, Michigan; Michigan Depart. of Conservation: Lansing, MI, USA, 1954.
- Mozola, A.J. Geology for land and ground-water development in Wayne County, Michigan. Michigan Geological Survey Report Investigation; 1969. Available online: https://www.michigan.gov/documents/deq/GIMDL-RI03_362876_7.pdf (accessed on 21 October 2020).
- Hoard, C.J.; Haefner, R.; Shuster, W.D.; Pieschek, R.L.; Beeler, S. Full water-cycle monitoring in an urban catchment reveals unexpected water transfers (Detroit MI, USA). JAWRA J. Am. Water Resour. Assoc. 2019, 56, 82–99. [Google Scholar] [CrossRef]
- Kim, J.Y.; Edil, T.B.; Park, J.K. Volatile Organic Compound (VOC) Transport through compacted clay. J. Geotech. Geoenviron. Eng. 2001, 127, 126–134. [Google Scholar] [CrossRef]
- Parker, B.L.; Chapman, S.W.; Guilbeault, M.A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 86–104. [Google Scholar] [CrossRef]
- Dragun, J. The Soil Chemistry of Hazardous Materials; Hazardous Materials Control Research Institute: Silver Spring, MD, USA, 1988. [Google Scholar]
- Eklund, B.; Beckley, L.; Yates, V.; McHugh, T.E. Overview of state approaches to vapor intrusion. Remediat. J. 2012, 22, 7–20. [Google Scholar] [CrossRef]
- McHugh, T.; Beckley, L. Sewers and Utility Tunnels as Preferential Pathways for Volatile Organic Compound Migration into Buildings: Risk Factors and Investigation Protocol; GSI Environmental Inc.: Houston, TX, USA, 2018; Available online: https://clu-in.org/download/issues/vi/VI-ER-201505-FR.pdf (accessed on 21 October 2020).
- Indiana Department of Environmental Management (IDEM). Investigation of Manmade Preferential Pathways: Technical Guidance Document; Indiana Department of Environmental Management, 2019. Available online: https://www.in.gov/idem/cleanups/files/remediation_tech_guidance_manmade_pathways.pdf (accessed on 22 November 2020).
- Davis, M.L.; Cornwell, D.A. Introduction to Environmental Engineering, 5th ed.; McGraw Hill Companies: New York, NY, USA, 2013. [Google Scholar]
- Schwarzenbach, R.S.; Gschwend, P.M.; Imboden, D.M. Environmental Organic Chemistry; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kim, Y.M.; Harrad, S.; Harrison, R.M. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ. Sci. Technol. 2001, 35, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (USEPA). Conceptual model Scenarios for the Vapor Intrusion Pathway. U.S. Environmental Protection Agency, Office of Solid and Emergency Response. EPA 530-R-10-003. 2012. Available online: https://www.epa.gov/vaporintrusion/conceptual-model-scenarios-vapor-intrusion-pathway (accessed on 21 October 2020).
- Abreu, L.D.V.; Johnson, P.C. Effect of vapor source−building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environ. Sci. Technol. 2005, 39, 4550–4561. [Google Scholar] [CrossRef] [PubMed]
- Abreu, L.D.V.; Johnson, P.C. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: Influence of degradation rate, source concentration, and depth. Environ. Sci. Technol. 2006, 40, 2304–2315. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Ettinger, R.A. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environ. Sci. Technol. 1991, 25, 1445–1452. [Google Scholar] [CrossRef]
- Kuo, J. Practical Design Calculations for Groundwater and Soil Remediation; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Vapor Intrusion Screening Level (VISL) Calculator, User’s Guide. 2015. Available online: https://www.epa.gov/vaporintrusion/vapor-intrusion-%09screening-level-calculator (accessed on 18 May 2020).
- U.S. Environmental Protection Agency (USEPA). Superfund: CERCLA Overview. 2020. Available online: https://www.epa.gov/superfund/superfund-cercla-overview (accessed on 20 May 2020).
- ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. ASTM International. E1527-13. 2013. Available online: https://www.astm.org/Standards/E1527.htm (accessed on 22 November 2020).
- ASTM Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process. ASTM International. E1903-19. 2019. Available online: https://www.astm.org/Standards/E1903.htm (accessed on 22 November 2020).
- Partner ESI. Phase II Environmental Site Assessment. 2020. Available online: https://www.partneresi.com/services/environmental-consulting/phase-ii-%09environmental-site-assessment-report (accessed on 19 February 2020).
- National Research Council (NRC). Contaminants in the Subsurface: Source Zone Assessment and Remediation; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Khan, F.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 2019, 221, 841–855. [Google Scholar] [CrossRef]
- Mackay, D.; Wilson, R.; Brown, M.; Ball, W.; Xia, G.; Durfee, D. A controlled field evaluation of continuous vs. pulsed pump-and-treat remediation of a VOC-contaminated aquifer: Site characterization, experimental setup, and overview of results. J. Contam. Hydrol. 2000, 41, 81–131. [Google Scholar] [CrossRef]
- Mulligan, C.; Yong, R.; Gibbs, B. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Gidarakos, E.; Aivalioti, M.V. Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. J. Hazard. Mater. 2007, 149, 574–581. [Google Scholar] [CrossRef]
- De Souza, M.M.; Oostrom, M.; White, M.D.; Da Silva, G.C.; Barbosa, M.C. Simulation of subsurface multiphase contaminant extraction using a bioslurping well model. Transp. Porous Media 2016, 114, 649–673. [Google Scholar] [CrossRef]
- Anfruns, A.; Martin, M.J.; Montes-Morán, M.A. Removal of odourous VOCs using sludge-based adsorbents. Chem. Eng. J. 2011, 166, 1022–1031. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef] [PubMed]
- Edmiston, P.L.; Underwood, L. Absorption of dissolved organic species from water using organically modified silica that swells. Sep. Purif. Technol. 2009, 66, 532–540. [Google Scholar] [CrossRef]
- Dardona, M.; Dittrich, T.M. Investigating the potential for recovering REEs from coal fly ash and power plant wastewater with an engineered sorbent. In World Environmental and Water Resources Congress: Emerging and Innovative Technologies and International Perspectives 2019; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2019; pp. 45–51. [Google Scholar]
- Hovey, J.L.; Dardona, M.; Allen, M.J.; Dittrich, T.M. Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials. Sep. Purif. Technol. 2021, 258, 118061. [Google Scholar] [CrossRef]
- Edmiston, P.L.; West, L.J.; Chin, A.; Mellor, N.; Barth, D. Adsorption of Gas Phase Organic Compounds by Swellable Organically Modified Silica. Ind. Eng. Chem. Res. 2016, 55, 12068–12079. [Google Scholar] [CrossRef]
- Mobasser, S.; Roostaei, J.; Zhang, Y.; Shi, W.; Dittrich, T.M.; Miller, C.J. Internet of things-based edge computing (IoTEC) sensor network and integrated air purifier for rapid response vapor intrusion identification and potential mitigation. In Proceedings of the 2019 Superfund Research Program (SRP) Annual Meeting, Seattle, WA, USA, 18–20 December 2019. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Engineering Issue: Soil Vapor Extraction (SVE) Technology. 2018. Available online: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=538425&Lab=N RMRL (accessed on 20 May 2020).
- TRC Vapor Intrusion Mitigation: Let Me Count the Ways. 2016. Available online: www.trcsolutions.com (accessed on 24 August 2020).
- Federal Remediation Technologies Roundtable (FRTR). Technology Screening Matrix. 2020. Available online: https://frtr.gov/scrntools.cfm (accessed on 2 July 2020).
- Reidpath, D.D. Infant mortality rate as an indicator of population health. J. Epidemiol. Community Health 2003, 57, 344–346. [Google Scholar] [CrossRef][Green Version]
- Mathews, T.J.; MacDorman, M.F. Infant mortality statistics from the 2004 period linked birth/infant death data set. Natl. Vital Stat. Rep. 2007, 55, 1–32. [Google Scholar]
- Kerkhof, G.F.; Breukhoven, P.E.; Leunissen, R.W.; Willemsen, R.H.; Hokken-Koelega, A.C. Does preterm birth influence cardiovascular risk in early adulthood? J. Pediatr. 2012, 161, 390–396. [Google Scholar] [CrossRef][Green Version]
- Mercuro, G.; Bassareo, P.P.; Flore, G.; Fanos, V.; Dentamaro, I.; Scicchitano, P.; Laforgia, N.; Ciccone, M.M. Prematurity and low weight at birth as new conditions predisposing to an increased cardiovascular risk. Eur. J. Prev. Cardiol. 2012, 20, 357–367. [Google Scholar] [CrossRef]
- Levy, D.P.; Sheiner, E.; Wainstock, T.; Sergienko, R.; Landau, D.; Walfisch, A. Evidence that children born at early term (37-38 6/7 weeks) are at increased risk for diabetes and obesity-related disorders. Am. J. Obstet. Gynecol. 2017, 217, 588.e1–588.e11. [Google Scholar] [CrossRef]
- Bouffard, K. Infant mortality rate in Detroit rivals areas of Third World. The Detroit News. 2014. Available online: https://www.centerforhealthjournalism.org/fellowships/projects/infant-mortality-rate-detroit-rivals-areas-third-world (accessed on 24 August 2020).
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.; Driscoll, A.K.; Mathews, T. Births: Final data for 2015. Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, National Vital Statistics Reports; 2017. Available online: https://stacks.cdc.gov/view/cdc/43595 (accessed on 21 October 2020).
- Cushing, L.; Faust, J.; August, L.M.; Cendak, R.; Wieland, W.; Alexeeff, G. Racial/ethnic disparities in cumulative environmental health impacts in California: Evidence from a statewide environmental justice screening tool (CalEnviroScreen 1.1). Am. J. Public Health 2015, 105, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, T.J.; Parker, J.D.; Kyle, A.D.; Schoendorf, K.C. Disparities in exposure to air pollution during pregnancy. Environ. Health Perspect. 2003, 111, 942–946. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miranda, M.L.; Maxson, P.; Edwards, S. Environmental contributions to disparities in pregnancy outcomes. Epidemiol. Rev. 2009, 31, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Sonnenfeld, N.; Hertz-Picciotto, I.; Kaye, W.E. Tetrachloroethylene in drinking water and birth outcomes at the US Marine Corps Base at Camp Lejeune, North Carolina. Am. J. Epidemiol. 2001, 154, 902–908. [Google Scholar] [CrossRef][Green Version]
- Aschengrau, A.; Weinberg, J.; Rogers, S.; Gallagher, L.; Winter, M.; Vieira, V.; Webster, T.; Ozonoff, D. Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of adverse birth outcomes. Environ. Health Perspect. 2008, 116, 814–820. [Google Scholar] [CrossRef]
- Bove, F.J.; Fulcomer, M.C.; Klotz, J.B.; Esmart, J.; Dufficy, E.M.; Savrin, J.E. Public drinking water contamination and birth outcomes. Am. J. Epidemiol. 1995, 141, 850–862. [Google Scholar] [CrossRef]
- Llop, S.; Ballester, F.; Estarlich, M.; Esplugues, A.; Rebagliato, M.; Iñiguez, C. Preterm birth and exposure to air pollutants during pregnancy. Environ. Res. 2010, 110, 778–785. [Google Scholar] [CrossRef]
- Slama, R.; Thiebaugeorges, O.; Goua, V.; Aussel, L.; Sacco, P.; Bohet, A.; Forhan, A.; Ducot, B.; Annesi-Maesano, I.; Heinrich, J.; et al. Maternal personal exposure to airborne benzene and intrauterine growth. Environ. Health Perspect. 2009, 117, 1313–1321. [Google Scholar] [CrossRef]
- Serrano, J.; Nielsen, C.C.; Jabbar, M.S.M.; Wine, O.; Bellinger, C.; Villeneuve, P.J.; Stieb, D.M.; Aelicks, N.; Aziz, K.; Buka, I.; et al. Interdisciplinary-driven hypotheses on spatial associations of mixtures of industrial air pollutants with adverse birth outcomes. Environ. Int. 2019, 131, 104972. [Google Scholar] [CrossRef]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Straughen, J.K.; Caldwell, C.H.; Young, A.A., Jr.; Misra, D.P. Partner support in a cohort of African American families and its influence on pregnancy outcomes and prenatal health behaviors. BMC Pregnancy Childbirth 2013, 13, 187. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Daniel, U.I.; Odioko, E. Effects of toluene on some physicochemical parameters of the test water, reproductive, hatching success and growth performance of clarias gariepinus (Burshell, 1822). J. Appl. Sci. Environ. Manag. 2017, 21, 380. [Google Scholar] [CrossRef][Green Version]
- Marchini, S.; Tosato, M.L.; Hammermeister, D.E.; Hoglund, M.D.; Norberg-King, T.J. Lethal and sublethal toxicity of benzene derivatives to the fathead minnow, using a short-term test. Environ. Toxicol. Chem. 1992, 11, 187–195. [Google Scholar] [CrossRef]
- Devlin, E.W.; Brammer, J.D.; Puyear, R.L. Effect of toluene on fathead minnow (Pimephales promelas Rafinesque) development. Arch. Environ. Contam. Toxicol. 1985, 14, 595–603. [Google Scholar] [CrossRef]
- Stoss, F.; Haines, T. The effects of toluene on embryos and fry of the Japanese medaka Oryzias latipes with a proposal for rapid determination of maximum acceptable toxicant concentration. Environ. Pollut. 1979, 20, 139–148. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Portales, A.M.; Batcho, K.G.; Freeman, J.L. Developmental toxicity of trichloroethylene in zebrafish (Danio rerio). Environ. Sci. Process. Impacts 2020, 22, 728–739. [Google Scholar] [CrossRef]
- Jin, H.; Ji, C.; Ren, F.; Aniagu, S.; Tong, J.; Jiang, Y.; Chen, T. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos. J. Hazard. Mater. 2020, 385, 121521. [Google Scholar] [CrossRef]
- Spencer, H.B.; Hussein, W.R.; Tchounwou, P.B. Effects of Tetrachloroethylene on the Viability and Development of Embryos of the Japanese Medaka, Oryzias latipes. Arch. Environ. Contam. Toxicol. 2002, 42, 463–469. [Google Scholar] [CrossRef]
- Spencer, H.B.; Hussein, W.R.; Tchounwou, P.B. Growth inhibition in Japanese medaka (Oryzias latipes) fish exposed to tetrachloroethylene. J. Environ. Biol. 2006, 27, 1–5. [Google Scholar]
- Wirbisky, S.E.; Damayanti, N.P.; Mahapatra, C.T.; Sepúlveda, M.S.; Irudayaraj, J.; Freeman, J.L. Mitochondrial dysfunction, disruption of F-actin polymerization, and transcriptomic alterations in zebrafish larvae exposed to trichloroethylene. Chem. Res. Toxicol. 2016, 29, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Reddy, M.K.; Mathur, N.; Saxena, D.; Chowdhuri, D.K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation. Toxicol. Appl. Pharmacol. 2009, 235, 226–243. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Himalian, R. Monocyclic Aromatic Hydrocarbons (MAHs) Induced Toxicity in Drosophila: How Close How Far? In Trends in Insect Molecular Biology and Biotechnology; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Singh, M.P.; Himalian, R. Monocyclic aromatic hydrocarbons (MAHs) induced toxicity in drosophila: How close how far. In Trends in Insect Molecular Biology and Biotechnology; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 53–65. [Google Scholar]
- Loch-Caruso, R.; Hassan, I.; Harris, S.M.; Kumar, A.; Bjork, F.; Lash, L.H. Trichloroethylene exposure in mid-pregnancy decreased fetal weight and increased placental markers of oxidative stress in rats. Reprod. Toxicol. 2019, 83, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.E.; Batis, J.C.; Paez-Martinez, N.; Cruz, S.L. The last decade of solvent research in animal models of abuse: Mechanistic and behavioral studies. Neurotoxicol. Teratol. 2006, 28, 636–647. [Google Scholar] [CrossRef]
- Hass, U.; Lund, S.P.; Hougaard, K.S.; Simonsen, L. Developmental neurotoxicity after toluene inhalation exposure in rats. Neurotoxicol. Teratol. 1999, 21, 349–357. [Google Scholar] [CrossRef]
- Hougaard, K.S.; Hass, U.; Lund, S.P.; Simonsen, L. Effects of prenatal exposure to toluene on postnatal development and behavior in rats. Neurotoxicol. Teratol. 1999, 21, 241–250. [Google Scholar] [CrossRef]
- Thiel, R.; Chahoud, I. Postnatal development and behaviour of Wistar rats after prenatal toluene exposure. Arch. Toxicol. 1997, 71, 258–265. [Google Scholar] [CrossRef]
- Hudák, A.; Ungváry, G. Embryotoxic effects of benzene and its methyl derivatives: Toluene, xylene. Toxicology 1978, 11, 55–63. [Google Scholar] [CrossRef]
- Hass, U. Effects of prenatal exposure to xylene on postnatal development and behavior in rats. Neurotoxicol. Teratol. 1995, 17, 341–349. [Google Scholar] [CrossRef]
- Malloul, H.; Mahdani, F.M.; Bennis, M.; Ba-M’Hamed, S. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice. Front. Behav. Neurosci. 2017, 11, 171. [Google Scholar] [CrossRef][Green Version]
- Bowen, S.E.; Batis, J.C.; Mohammadi, M.H.; Hannigan, J.H. Abuse pattern of gestational toluene exposure and early postnatal development in rats. Neurotoxicol. Teratol. 2005, 27, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Balster, R.L. Neurobehavioral consequences of intermittent prenatal exposure to high concentrations of toluene. Neurotoxicol. Teratol. 1997, 19, 305–313. [Google Scholar] [CrossRef]
- Marks, T.A.; LeDoux, T.A.; Moore, J.A. Teratogenicity of a commercial xylene mixture in the mouse. J. Toxicol. Environ. Health Part A 1982, 9, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Valcke, M.; Haddad, S. Assessing human variability in kinetics for exposures to multiple environmental chemicals: A physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, andm-xylene. J. Toxicol. Environ. Health Part A 2015, 78, 409–431. [Google Scholar] [CrossRef] [PubMed]
- Ghantous, H.; Danielsson, B. Placental transfer and distribution of toluene, xylene and benzene, and their metabolites during gestation in mice. Biol. Res. Pregnancy Perinatol. 1986, 7, 98–105. [Google Scholar] [PubMed]
- Lupo, P.J.; Symanski, E.; Waller, D.K.; Chan, W.; Langlois, P.H.; Canfield, M.A.; Mitchell, L.E. Maternal exposure to ambient levels of benzene and neural tube defects among offspring: Texas, 1999–2004. Environ. Health Perspect. 2010, 119, 397–402. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Da-Silva, V.; Malheiros, L.; Figueiredo, L.; Sá-Rego, M.; Paumgartten, F. Neurobehavioral development of rats exposed to toluene through maternal milk. Revista Brasileira Pesqui. Med. Biol. 1991, 24, 1239–1243. [Google Scholar]
- Valcke, M.; Krishnan, K. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults. Inhal. Toxicol. 2011, 23, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Peng, C.; Ng, J. BTEX in vitro exposure tool using human lung cells: Trips and gains. Chemosphere 2015, 128, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.; Witz, G.; Goldstein, B.D. The toxicology of benzene. Environ. Health Perspect. 1993, 100, 293–306. [Google Scholar] [CrossRef]
- Badger, T.M.; Hidestrand, M.; Shankar, K.; McGuinn, W.D.; Ronis, M.J. The effects of pregnancy on ethanol clearance. Life Sci. 2005, 77, 2111–2126. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.H.; Xie, H.; Yu, A.-M.; Jeong, H. Altered Cytochrome P450 Expression in mice during pregnancy. Drug Metab. Dispos. 2011, 39, 165–169. [Google Scholar] [CrossRef][Green Version]
- Jones, S.M.; Boobis, A.; Moore, G.E.; Stanier, P. Expression of CYP2E1 during human fetal development: Methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem. Pharmacol. 1992, 43, 1876–1879. [Google Scholar] [CrossRef]
- Haddad, S.; Tardif, R.; Tardif, G.C.; Krishnan, K. Physiological modeling of the toxicokinetic interactions in a quaternary mixture of aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 1999, 161, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Wierda, D.; King, A.G.; Luebke, R.W.; Reasor, M.J.; Smialowicz, R.J. Perinatal Immunotoxicity of Benzene Toward Mouse B Cell Development. J. Am. Coll. Toxicol. 1989, 8, 981–996. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, C.J.; Runge-Morris, M.; Cassidy-Bushrow, A.E.; Straughen, J.K.; Dittrich, T.M.; Baker, T.R.; Petriello, M.C.; Mor, G.; Ruden, D.M.; O’Leary, B.F.; Teimoori, S.; Tummala, C.M.; Heldman, S.; Agarwal, M.; Roth, K.; Yang, Z.; Baker, B.B. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. Int. J. Environ. Res. Public Health 2020, 17, 8755. https://doi.org/10.3390/ijerph17238755
Miller CJ, Runge-Morris M, Cassidy-Bushrow AE, Straughen JK, Dittrich TM, Baker TR, Petriello MC, Mor G, Ruden DM, O’Leary BF, Teimoori S, Tummala CM, Heldman S, Agarwal M, Roth K, Yang Z, Baker BB. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. International Journal of Environmental Research and Public Health. 2020; 17(23):8755. https://doi.org/10.3390/ijerph17238755
Chicago/Turabian StyleMiller, Carol J., Melissa Runge-Morris, Andrea E. Cassidy-Bushrow, Jennifer K. Straughen, Timothy M. Dittrich, Tracie R. Baker, Michael C. Petriello, Gil Mor, Douglas M. Ruden, Brendan F. O’Leary, Sadaf Teimoori, Chandra M. Tummala, Samantha Heldman, Manisha Agarwal, Katherine Roth, Zhao Yang, and Bridget B. Baker. 2020. "A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens" International Journal of Environmental Research and Public Health 17, no. 23: 8755. https://doi.org/10.3390/ijerph17238755