Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Primary Human Fibroblast Cells Culture
2.2. Cell Viability Test
2.3. Cell Treatment
2.4. Statistical Analysis
2.5. Detection of Collagen Alpha-4 Levels by Enzyme Linked Immunosorbent Assay
3. Results
4. Discussion
5. Strengths and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Kato, T.; Okahashi, N.; Kawai, S.; Kato, T.; Inaba, H.; Morisaki, I.; Amano, A. Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. J. Periodontol. 2005, 76, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Hallmon, W.W.; Rossmann, J.A. The role of drugs in the pathogenesis of gingival overgrowth. A collective review of current concepts. Periodontol. 2000 1999, 21, 176–196. [Google Scholar] [CrossRef] [PubMed]
- Brunet, L.; Miranda, J.; Roset, P.; Berini, L.; Farré, M.; Mendieta, C. Prevalence and risk of gingival enlargement in patients treated with anticonvulsant drugs. Eur. J. Clin. Investig. 2001, 31, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Ramìrez-Ràmiz, A.; Brunet-LLobet, L.; Lahor-Soler, E.; Miranda-Rius, J. On the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth. Open Dent. J. 2017, 11, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Hatahira, H.; Abe, J.; Hane, Y.; Matsui, T.; Sasaoka, S.; Motooka, Y.; Hasegawa, S.; Fukuda, A.; Naganuma, M.; Ohmori, T.; et al. Drug-induced gingival hyperplasia: A retrospective study using spontaneous reporting system databases. J. Pharm. Health Care Sci. 2017, 3, 19. [Google Scholar] [CrossRef]
- Uzel, M.I.; Kantarci, A.; Hong, H.H.; Uygur, C.; Sheff, M.C.; Firatli, E.; Trackman, P.C. Connective tissue growth factor in phenytoin-induced gingival overgrowth. J. Periodontol. 2001, 72, 921–931. [Google Scholar] [CrossRef]
- Bharti, V.; Bansal, C. Drug-induced gingival overgrowth: The nemesis of gingival unravelled. J. Indian Soc. Periodontol. 2013, 17, 182–187. [Google Scholar] [CrossRef]
- Dongari-Baqtzoglou, A. Research, Science and therapy committee, american academy of periodontology. Drug-associated gingival enlargement. J. Periodontol. 2004, 75, 1424–1431. [Google Scholar]
- Newman, M.G.; Takei, H.; Klokkevold, P.R.; Carranza, F.A. Carranza’s Clinical Periodontology, 10th ed.; Elsevier: St Louis, MO, USA, 2006; pp. 375–376. [Google Scholar]
- Johnson, E.K.; Jones, J.E.; Seidenberg, M.; Hermann, B.P. The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy. Epilepsia 2004, 45, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Maneuf, Y.P.; Gonzalez, M.I.; Sutton, K.S.; Chung, F.Z.; Pinnock, R.D.; Lee, K. Cellular and molecular action of the putative GABA-mimetic, gabapentin. Cell Mol. Life Sci. 2003, 60, 742–750, Review. [Google Scholar]
- Candotto, V.; Scapoli, L.; Gaudio, R.M.; Gianni, A.B.; Bolzoni, A.; Racco, P.; Lauritano, D.; Cura, F. Gabapentin affects the expression of inflammatory mediators on healthy gingival cells. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827765. [Google Scholar] [CrossRef] [PubMed]
- Al-hamilly, N.S.; Radwan, L.R.S.; Abdul-rahman, M.; Mourad, M.I.; Grawish, M.E. Biological roles of KFG, CTGF and TGF-β in cyclosporine-A and phenytoin-induced gingival overgrowth: A comparative experimental animal study. Arch. Oral. Biol. 2016, 66, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Fu, E.; Chin, Y.T.; Tu, H.P.; Chiu, H.C.; Shen, E.C.; Chiang, C.Y. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J. Clin. Periodontol. 2015, 42, 29–36. [Google Scholar] [CrossRef]
- Lauritano, D.; Moreo, G.; Limongelli, L.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines 2020, 8, 221. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Anhut, H.; Ashman, P.; Feuerstein, T.J.; Sauermann, W.; Saunders, M.; Schmidt, B. Gabapentin (Neurontin) as add-on therapy in patients with partial seizueres: A double-blind, placebo-controlled study. Int. Gabapentin Study Group Epilepsia 1994, 35, 795–801. [Google Scholar]
- Inselman, A.L.; Hansen, D.K. Phenytoin. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Oxford, UK, 2014; pp. 895–897. [Google Scholar]
- Desai, P.; Silver, J.G. Drug-induced gingival enlargements. J. Can. Dent. Assoc. 1998, 64, 263–268. [Google Scholar]
- Nanda, T.; Singh, B.; Sharma, P.; Arora, K.S. Cyclosporine A and amlodipine induced gingival overgrowth in a kidney transplant recipient: Case presentation with literature review. BMJ Case Rep. 2019, 12, e229587. [Google Scholar] [CrossRef]
- Crăiţoiu, Ş.; Bobic, A.G.; Manolea, H.O.; Mehedinti, M.C.; Pascu, R.M.; Florescu, A.M.; Petcu, I.C.; Osman, A.; Fărcaş-Berechet, C.M.; Iacov-Crăiţoiu, M.M. Immunohistochemical study of experimentally drug-induced gingival overgrowth. Rom. J. Morphol. Embryol. 2019, 60, 95–102. [Google Scholar]
- Subramani, T.; Rathnavelu, V.; Alitheenn, N.B. The Possible Potential Therapeutic Targets for Drug Induced Gingival Overgrowth. Mediat. Inflamm. 2013, 2013, 639468. [Google Scholar] [CrossRef]
- Farronato, G.P. L’odontostomatologia per L’igienista Dentale; PICCIN: Padova, Italy, 2007. [Google Scholar]
- Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.; Loscalzo, J. Harrison’s Principles of Internal Medicine; McGrawHill: New York, NY, USA, 1991; p. 23l1-2r. [Google Scholar]
- Csiszar, A.; Wiebe, C.; Larjava, H.; Häkkinen, L. Distinctive Molecular Composition of Human Gingival Interdental Papilla. J. Periodontol. 2007, 78, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Hassell, T.M.; Page, R.C.; Narayanan, A.S.; Cooper, C.G. Diphenylhydantoin (Dilantin) gingival hyperplasia: Drug-induced abnormality of connective tissue. Proc. Natl. Acad. Sci. USA 1976, 73, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kimball, O.P. The treatment of epilepsy with sodium diphenyl hydantoinate. J. Am. Med Assoc. 1939, 11, 1244–1245. [Google Scholar] [CrossRef]
- Strean, L.R.; Leoni, E. Dilantin gingival hyperplasia. Newer concepts related to etiology and treatment. N. Y. State Dent. J. 1959, 25, 339–347. [Google Scholar]
- Faurbye, A. Behandling af epilepsi med diphenylhydantoin. Ugeskr Laeg 1939, 101, 1350–1354. [Google Scholar]
- Candotto, V.; Pezzetti, F.; Baj, A.; Beltramini, G.; Lauritano, D.; Di Girolamo, M.; Cura, F. Phenytoin and gingival mucosa: A molecular investigation. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419828259. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Pietrzykowska, A.; Zalewska, A.; Knas, M.; Daniszewska, I. The significante of Matrix Metalloproteinases in Oral Diseases. Adv. Clin. Exp. Med. 2016, 25, 383–390. [Google Scholar] [CrossRef]
- Lauritano, D.; Palmieri, A.; Lucchese, A.; Di Stasio, D.; Moreo, G.; Carinci, F. Role of Cyclospoine in Gingival Hyperplasia: An In Vitro Study on Gingival Fibroblasts. Int. J. Mol. Sci. 2020, 21, 595. [Google Scholar] [CrossRef]
- Trackman, P.C.; Kantarci, A. Connective tissue metabolism and gingival overgrowth. Crit. Rev. Oral. Biol. Med. 2004, 15, 165–175. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Si, S.; Liu, X.; Hana, Z.; Tao, J.; Chen, H.; Suo, C.; Wei, J.; Tan, R.; et al. Lack of Association Between TGF-β1 and MDR1 Genetic Polymorphisms and Cyclosporine-Induced Gingival Overgrowth in Kidney Transplant Recipients: A Meta-analysis. Transplant. Proc. 2017, 49, 1336–1343. [Google Scholar] [CrossRef]
- Dunning, A.M.; Ellis, P.D.; McBride, S.; Kirschenlohr, H.L.; Healey, C.S.; Kemp, P.R.; Luben, R.N.; Chang-Claude, J.; Mannermaa, A.; Kataja, V.; et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003, 63, 2610–2615. [Google Scholar] [PubMed]
- Linden, G.J.; Haworth, S.E.; Maxwell, A.P.; Poulton, K.V.; Dyer, P.A.; Middleton, D.; Irwin, C.R.; Marley, J.J.; McNamee, P.; Short, C.D.; et al. The influence of transforming growth factor-beta(1) gene polymorphisms on the severity of gingival overgrowth associated with concomitant use of cyclosporin A and a calcium channel blocker. J. Periodontol. 2001, 72, 808. [Google Scholar] [CrossRef]
- Sume, S.S.; Kantarci, A.; Lee, A. Epithelial to Mesenchymal Transition in Gingival Overgrowth. Am. J. Pathol. 2010, 177, 208–218. [Google Scholar] [CrossRef]
- Myrillas, T.T.; Linden, G.J.; Marley, J.J.; Irwin, C.R.; Cyclosporin, A. Regulates Interleukin-1ß and Interleukin-6 Expression in Gingiva: Implications for Gingival Overgrowth. J. Periodontol. 1999, 70, 294–300. [Google Scholar] [CrossRef]
- Leach, J.P. Polypharmacy with Anticonvulsants. CNS Drugs 1997, 8, 366–375. [Google Scholar] [CrossRef]
- Assaggaf, M.A.; Kantarci, A.; Sume, S.S.; Trackman, P.C. Prevention of Phenytoin-Induced Gingival Overgrowth by Lovastatin in Mice. Am. J. Pathol. 2015, 185, 1588–1599. [Google Scholar] [CrossRef]
Gene | Fold Change | Gene Function |
---|---|---|
CD44 | 0.88 | Cell–Cell Adhesion |
CDH1 | 1.54 | Cell–Cell Adhesion |
COL1A2 | 1.22 | Collagens & Extracellular Matrix Structural constituent |
COL2A1 | 0.88 | Collagens & Extracellular Matrix Structural constituent |
COL3A1 | 0.67 | Collagens & Extracellular Matrix Structural constituent |
COL4A1 | 2.54 | Collagens & Extracellular Matrix Structural constituent |
COL5A1 | 1.11 | Collagens & Extracellular Matrix Structural constituent |
COL6A1 | 1.32 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.27 | Collagens & Extracellular Matrix Structural constituent |
COL8A1 | 1.35 | Collagens & Extracellular Matrix Structural constituent |
COL9A1 | 0.89 | Collagens & Extracellular Matrix Structural constituent |
COL10A1 | 1.00 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 5.17 | Collagens & Extracellular Matrix Structural constituent |
CCTNA1 | 1.84 | Cell Adhesion Molecule |
CTNB | 1.36 | Cell Adhesion Molecule |
CTNND2 | 0.77 | Cell Adhesion Molecule |
FN1 | 0.47 | Cell Adhesion Molecule |
HAS1 | 1.05 | Transmembrane Receptor |
ILF3 | 0.90 | Transmembrane Receptor |
ITGA1 | 1.58 | Transmembrane Receptor |
ITGA2 | 1.92 | Transmembrane Receptor |
ITGA3 | 1.60 | Transmembrane Receptor |
ITGA4 | 1.54 | Transmembrane Receptor |
ITGA5 | 1.79 | Transmembrane Receptor |
ITGA6 | 1.09 | Transmembrane Receptor |
ITGA7 | 6.73 | Transmembrane Receptor |
ITGA8 | 1.73 | Transmembrane Receptor |
ITGB1 | 1.59 | Transmembrane Receptor |
ITGB2 | 0.44 | Transmembrane Receptor |
ITGB4 | 0.19 | Transmembrane Receptor |
ITGB5 | 1.14 | Transmembrane Receptor |
LAMA1 | 0.77 | Basement Membrane Constituent |
LAMA2 | 0.26 | Basement Membrane Constituent |
LAMA3 | 1.05 | Basement Membrane Constituent |
LAMB1 | 0.06 | Basement Membrane Constituent |
LAMB2 | 1.50 | Basement Membrane Constituent |
LAMB3 | 3.78 | Basement Membrane Constituent |
MMP2 | 1.43 | Extracellular Matrix Protease |
MMP3 | 1.15 | Extracellular Matrix Protease |
MMP7 | 1.55 | Extracellular Matrix Protease |
MMP8 | 0.08 | Extracellular Matrix Protease |
MMP9 | 0.80 | Extracellular Matrix Protease |
MMP10 | 2.36 | Extracellular Matrix Protease |
MMP11 | 0.02 | Extracellular Matrix Protease |
MMP12 | 2.29 | Extracellular Matrix Protease |
MMP13 | 1.48 | Extracellular Matrix Protease |
MMP14 | 0.79 | Extracellular Matrix Protease |
MMP15 | 0.10 | Extracellular Matrix Protease |
MMP16 | 0.18 | Extracellular Matrix Protease |
MMP24 | 0.05 | Extracellular Matrix Protease |
MMP26 | 1.74 | Extracellular Matrix Protease |
TGFB1 | 1.12 | TGFβ Signaling |
TGFB2 | 0.94 | TGFβ Signaling |
TGFB3 | 0.73 | TGFβ Signaling |
TIMP1 | 0.88 | Extracellular Matrix Protease Inhibitor |
VCAN | 0.86 | Cell Adhesion Molecule |
RPL13 | 1.00 | Housekeeping gene |
Gene | Fold Change | Gene Function |
---|---|---|
CD44 | 0.64 | Cell–Cell Adhesion |
CDH1 | 1.71 | Cell–Cell Adhesion |
COL1A2 | 0.96 | Collagens & Extracellular Matrix Structural constituent |
COL2A1 | 0.88 | Collagens & Extracellular Matrix Structural constituent |
COL3A1 | 0.92 | Collagens & Extracellular Matrix Structural constituent |
COL4A1 | 2.64 | Collagens & Extracellular Matrix Structural constituent |
COL5A1 | 0.73 | Collagens & Extracellular Matrix Structural constituent |
COL6A1 | 0.82 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.30 | Collagens & Extracellular Matrix Structural constituent |
COL8A1 | 0.98 | Collagens & Extracellular Matrix Structural constituent |
COL9A1 | 0.78 | Collagens & Extracellular Matrix Structural constituent |
COL10A1 | 0.87 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 1.36 | Collagens & Extracellular Matrix Structural constituent |
CCTNA1 | 1.12 | Cell Adhesion Molecule |
CTNB | 0.99 | Cell Adhesion Molecule |
CTNND2 | 0.73 | Cell Adhesion Molecule |
FN1 | 0.39 | Cell Adhesion Molecule |
HAS1 | 0.79 | Transmembrane Receptor |
ILF3 | 0.78 | Transmembrane Receptor |
ITGA1 | 1.41 | Transmembrane Receptor |
ITGA2 | 1.64 | Transmembrane Receptor |
ITGA3 | 1.27 | Transmembrane Receptor |
ITGA4 | 0.89 | Transmembrane Receptor |
ITGA5 | 1.22 | Transmembrane Receptor |
ITGA6 | 0.74 | Transmembrane Receptor |
ITGA7 | 2.73 | Transmembrane Receptor |
ITGA8 | 0.62 | Transmembrane Receptor |
ITGB1 | 1.30 | Transmembrane Receptor |
ITGB2 | 0.43 | Transmembrane Receptor |
ITGB4 | 0.27 | Transmembrane Receptor |
ITGB5 | 0.76 | Transmembrane Receptor |
LAMA1 | 0.64 | Basement Membrane Constituent |
LAMA2 | 0.05 | Basement Membrane Constituent |
LAMA3 | 0.65 | Basement Membrane Constituent |
LAMB1 | 0.35 | Basement Membrane Constituent |
LAMB2 | 0.91 | Basement Membrane Constituent |
LAMB3 | 2.23 | Basement Membrane Constituent |
MMP2 | 0.97 | Extracellular Matrix Protease |
MMP3 | 1.17 | Extracellular Matrix Protease |
MMP7 | 1.41 | Extracellular Matrix Protease |
MMP8 | 0.07 | Extracellular Matrix Protease |
MMP9 | 0.80 | Extracellular Matrix Protease |
MMP10 | 1.34 | Extracellular Matrix Protease |
MMP11 | 0.004 | Extracellular Matrix Protease |
MMP12 | 1.57 | Extracellular Matrix Protease |
MMP13 | 1.36 | Extracellular Matrix Protease |
MMP14 | 1.19 | Extracellular Matrix Protease |
MMP15 | 0.05 | Extracellular Matrix Protease |
MMP16 | 0.34 | Extracellular Matrix Protease |
MMP24 | 0.05 | Extracellular Matrix Protease |
MMP26 | 1.08 | Extracellular Matrix Protease |
TGFB1 | 1.19 | TGFβ Signaling |
TGFB2 | 0.88 | TGFβ Signaling |
TGFB3 | 0.85 | TGFβ Signaling |
TIMP1 | 0.87 | Extracellular Matrix Protease Inhibitor |
VCAN | 0.82 | Cell Adhesion Molecule |
RPL13 | 1.00 | Housekeeping gene |
Gene | Fold Change | SD (+/–) | Gene Function |
---|---|---|---|
COL4A1 | 2.54 | 0.07 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.27 | 0.01 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 5.17 | 0.15 | Collagens & Extracellular Matrix Structural constituent |
FN1 | 0.47 | 0.05 | Cell Adhesion Molecule |
ITGA7 | 6.73 | 0.08 | Transmembrane Receptor |
ITGB2 | 0.44 | 0.05 | Transmembrane Receptor |
ITGB4 | 0.19 | 0.00 | Transmembrane Receptor |
LAMA2 | 0.26 | 0.03 | Basement Membrane Constituent |
LAMB1 | 0.06 | 0.00 | Basement Membrane Constituent |
LAMB3 | 3.78 | 0.09 | Basement Membrane Constituent |
MMP8 | 0.08 | 0.00 | Extracellular Matrix Protease |
MMP10 | 2.36 | 0.05 | Extracellular Matrix Protease |
MMP11 | 0.02 | 0.00 | Extracellular Matrix Protease |
MMP12 | 2.29 | 0.13 | Extracellular Matrix Protease |
MMP15 | 0.10 | 0.00 | Extracellular Matrix Protease |
MMP16 | 0.18 | 0.02 | Extracellular Matrix Protease |
MMP24 | 0.05 | 0.00 | Extracellular Matrix Protease |
Gene | Fold Change | SD (+/–) | Gene Function |
---|---|---|---|
COL4A1 | 2.64 | 0.04 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.30 | 0.04 | Collagens & Extracellular Matrix Structural constituent |
FN1 | 0.39 | 0.01 | Cell Adhesion Molecule |
ITGA7 | 2.73 | 0.06 | Transmembrane Receptor |
ITGB2 | 0.43 | 0.08 | Transmembrane Receptor |
ITGB4 | 0.27 | 0.04 | Transmembrane Receptor |
LAMA2 | 0.05 | 0.00 | Basement Membrane Constituent |
LAMB1 | 0.35 | 0.03 | Basement Membrane Constituent |
LAMB3 | 2.23 | 0.03 | Basement Membrane Constituent |
MMP8 | 0.07 | 0.00 | Extracellular Matrix Protease |
MMP11 | 0.004 | 0.00 | Extracellular Matrix Protease |
MMP15 | 0.05 | 0.00 | Extracellular Matrix Protease |
MMP16 | 0.34 | 0.04 | Extracellular Matrix Protease |
MMP24 | 0.05 | 0.00 | Extracellular Matrix Protease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauritano, D.; Moreo, G.; Limongelli, L.; Tregambi, E.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. Int. J. Environ. Res. Public Health 2020, 17, 8229. https://doi.org/10.3390/ijerph17218229
Lauritano D, Moreo G, Limongelli L, Tregambi E, Palmieri A, Carinci F. Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. International Journal of Environmental Research and Public Health. 2020; 17(21):8229. https://doi.org/10.3390/ijerph17218229
Chicago/Turabian StyleLauritano, Dorina, Giulia Moreo, Luisa Limongelli, Elena Tregambi, Annalisa Palmieri, and Francesco Carinci. 2020. "Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts" International Journal of Environmental Research and Public Health 17, no. 21: 8229. https://doi.org/10.3390/ijerph17218229
APA StyleLauritano, D., Moreo, G., Limongelli, L., Tregambi, E., Palmieri, A., & Carinci, F. (2020). Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. International Journal of Environmental Research and Public Health, 17(21), 8229. https://doi.org/10.3390/ijerph17218229