Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Novel Coronavirus (2019-nCoV) Situation Report—1 (2020); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Novel Coronavirus (2019-nCoV) Situation Report—12 (2020); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. Coronavirus Disease (COVID-19)—Statistics and Research (2020); Our World in Data: Oxford, UK, 2020; Available online: https://ourworldindata.org/coronavirus (accessed on 15 April 2020).
- Wilder-Smith, A.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020, 27. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Lee, A. Wuhan novel coronavirus (COVID-19): Why global control is challenging? Public Health 2020, 179, A1–A2. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report—30 (2020); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Jung, S.; Akhmetzhanov, A.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med. 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Famulare, M. 2019-nCoV: Preliminary Estimates of the Confirmed-Case-Fatality-Ratio and Infection-Fatality-Ratio, and Initial Pandemic Risk Assessment; Institute for Disease Modeling: Bellevue, WA, USA, 2020. [Google Scholar]
- Morales, K.F.; Paget, J.; Spreeuwenberg, P. Possible explanations for why some countries were harder hit by the pandemic influenza virus in 2009—A global mortality impact modeling study. BMC Infect Dis. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, P.; Sokolow, S.H.; Vandegrift, K.J.; Kilpatrick, A.M.; Daszak, P. Predictive Power of Air Travel and Socio-Economic Data for Early Pandemic Spread. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. J. Am. Med. 2020. [Google Scholar] [CrossRef]
- Adams, M.; Katz, D.; Grandpre, J. Population-Based Estimates of Chronic Conditions Affecting Risk for Complications from Coronavirus Disease. J. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Ichii, H.; Schubert, J.; Bania, J.; Khosrawipour, T. Internationally lost COVID-19 cases. J. Microbiol. Immunol. Infect. 2020. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Technol. 2020, 30, 313–324. [Google Scholar]
- Martelleti, L.; Martelleti, P. Air Pollution and the Novel Covid-19 Disease: A Putative Disease Risk Factor. SN Compr. Clin. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Monami, M.; Silverii, A.; Mannucci, E. Potential Impact of Climate on Novel CoronaVirus (COVID-19) Epidemic. J. Occup. Environ. Med. 2020, 62, e371–e372. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T.; et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef]
- Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F. COVID-19 diagnosis and management: A comprehensive review. J. Intern. Med. 2020, 288, 192–206. [Google Scholar] [CrossRef]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 25 April 2020).
- Organisation for Economic, Co-operation and Development. OECD Data. Available online: http://data.oecd.org (accessed on 25 April 2020).
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/DataQuery/ (accessed on 29 April 2020).
- Global Health Data Exchange. GHDx. Available online: http://ghdx.healthdata.org/ (accessed on 29 April 2020).
- Milne, G.; Xie, S. The Effectiveness of Social Distancing in Mitigating COVID-19 Spread: A modelling analysis. MedRxiv 2020. [Google Scholar] [CrossRef]
- CDC. Coronavirus Disease 2019 (COVID-19). Cent. Dis. Control Prev. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html (accessed on 26 April 2020).
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. N. Engl. J. Med. 2020, 382. [Google Scholar] [CrossRef]
- Vergano, M.; Bertolini, G.; Giannini, A.; Gristina, G.R.; Livigni, S.; Mistraletti, G.; Riccioni, L.; Petrini, F. Clinical Ethics Recommendations for the Allocation of Intensive Care Treatments in exceptional, resource-limited circumstances. Crit. Care. 2020, 24, 165. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Nikitara, K. COVID-19 and smoking: A systematic review of the evidence. Tob. Induc. Dis. 2020, 18. [Google Scholar] [CrossRef]
- Guo, F.R. Active smoking is associated with severity of coronavirus disease 2019 (COVID-19): An update of a meta-analysis. Tob. Induc. Dis. 2020, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Riccioni, L.; Bertolini, G.; Giannini, A.; Vergano, M.; Gristina, G.; Livigni, S.; Mistraletti, G.; Flavia Petrini Gruppo di Lavoro Siaarti-Società Italiana di Anestesia Analgesia Rianimazione E Terapia Intensiva. Clinical ethics recommendations for the allocation of intensive care treatments, in exceptional, resource-limited circumstances. Recenti Prog. Med. 2020, 111, 207–211. [Google Scholar]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Oshitani, H.; Kamigaki, T.; Suzuki, A. Major Issues and Challenges of Influenza Pandemic Preparedness in Developing Countries. Emerg. Infect. Dis. 2008, 14, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Krumkamp, R.; Kretzschmar, M.; Rudge, J.W.; Ahmad, A.; Hanvoravongchai, P.; Westenhoefer, J.; Stein, M.; Putthasri, W.; Coker, R. Health service resource needs for pandemic influenza in developing countries: A linked transmission dynamics, interventions and resource demand model. Epidemiol. Infect. 2011, 139, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Hanvoravongchai, P.; Adisasmito, W.; Chau, P.N.; Conseil, A.; De Sa, J.; Krumkamp, R.; Mounier-Jack, S.; Phommasack, B.; Putthasri, W.; Shih, C.S.; et al. Pandemic influenza preparedness and health systems challenges in Asia: Results from rapid analyses in 6 Asian countries. BMC Public Health 2010, 10, 322. [Google Scholar] [CrossRef]
- Yang, W.; Sirajuddin, A. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur. Radiol. 2020. [Google Scholar] [CrossRef]
- Fields, B.K.K.; Demirjian, N.L.; Gholamrezanezhad, A. Coronavirus Disease 2019 (COVID-19) diagnostic technologies: A country-based retrospective analysis of screening and containment procedures during the first wave of the pandemic. Clin. Imaging 2020, 67, 219–225. [Google Scholar] [CrossRef]
- Davarpanah, A.H.; Mahdavi, A.; Sabri, A.; Langroudi, T.F.; Kahkouee, S.; Haseli, S.; Kazemi, M.A.; Mehrian, P.; Mahdavi, A.; Falahati, F.; et al. Novel Screening and Triage Strategy in Iran During Deadly Coronavirus Disease 2019 (COVID-19) Epidemic: Value of Humanitarian Teleconsultation Service. J. Am. Coll. Radiol. 2020, 17, 734–738. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020, 296, E115–E117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet Lond. Engl. 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; Girard, T.D.; Ely, E.W. The immunopathogenesis of sepsis in elderly patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 41, S504–S512. [Google Scholar] [CrossRef]
- Weiskopf, D.; Weinberger, B.; Grubeck-Loebenstein, B. The aging of the immune system. Transpl. Int. 2009, 22, 1041–1050. [Google Scholar] [CrossRef]
- Khafaie, M.A.; Rahim, F. Cross-Country Comparison of Case Fatality Rates of COVID-19/SARS-COV-2. Osong Public Health Res. Perspect. 2020, 11, 74–80. [Google Scholar] [CrossRef]
- Nakajima, Y.; Yamada, K.; Imamura, K.; Kobayashi, K. Radiologist supply and workload: International comparison: Working Group of Japanese College of Radiology. Radiat. Med. 2008, 26, 455–465. [Google Scholar] [CrossRef]
- Salehi, S.; Balakrishnan, S.; Gholamrezanezhad, A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. Am. J. Roentgenol. 2020. [Google Scholar] [CrossRef]
- Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020, 296, E41–E45. [Google Scholar] [CrossRef]
Variable | Mean (SD) | Rate Ratio (SE) | p (Density Interaction) |
---|---|---|---|
Percent population >70 years old † | 8.9 (4.7) | 1.33 (0.16) * | - |
Population density | 158.7 (148.2) | 1.14 (0.32) | - |
Population size † | 135.4 × 106 (310 × 106) | 1.07 (0.14) | - |
GDP in 2017 ($) † | 1.82 × 1012 (3.57 × 1012) | 1.23 (0.16) | - |
GDP per capita in 2017 | 29761 (22379) | 1.11 (0.15) | - |
Healthcare expenditure per capita | 2849 (2735) | 1.17 (0.16) | - |
Scientific production † | 53393 (91189) | 1.20 (0.15) | - |
Hospital beds per 1000 | 3.95 (2.91) | 0.92 (0.14) | - |
Physicians per 1000 | 2.78 (1.26) | 1.16 (0.14) | - |
General mortality per 1000 | 7.82 (2.62) | 1.44 (0.21) * | - |
Life expectancy | 78.7 (4.3) | 1.21 (0.14) | - |
CT scanners per 1 million | 26.6 (22.2) | 0.75 (0.13) | - |
Radiologists † | 5863 (14180) | 1.20 (0.20) | - |
Radiologists per 1 million | 64.1 (43.2) | 1.25 (0.20) | - |
Total tests † | 330013 (325817) | 1.15 (0.14) | - |
Tests per 1000 | 12.0 (9.4) | 1.04 (0.15) | 0.04 |
Median age | 36.3 (6.8) | 1.23 (0.14) | - |
Days from 100th case to quarantine | 9.5 (8.4) | 1.26 (0.18) | - |
Air travel † | 93587 (165381) | 1.05 (0.13) | - |
Education | 73.5 (19.2) | 0.88 (0.14) | - |
Percent Illiterate † | 4.5 (8.1) | 0.75 (0.09) * | - |
Percent Obese | 21.1 (8.5) | 0.99 (0.15) | 0.005 |
Percent Smokers | 20.3 (6.2) | 1.08 (0.14) | 0.03 |
Percent Tobacco Users | 23.3 (8.0) | 1.11 (0.15) | 0.06 |
Percent HIV | 0.2 (0.3) | 1.30 (0.18) * | 0.001 |
Percent COPD | 5.4 (2.3) | 1.23 (0.15) | - |
Air pollution † | 27.2 (34.0) | 0.68 (0.09) ** | - |
Variable | Model I | Model II | Model III |
---|---|---|---|
RR (95% CI) | RR (95% CI) | RR (95% CI) | |
Prevalence smoking (10% population increase) | |||
at low population density | 1.00 (0.69, 1.44) | 1.13 (0.80, 1.61) | 0.96 (0.69, 1.33) |
at mean population density | 1.59 (0.99, 2.56) | 1.72 (1.12, 2.65) | 1.33 (0.90, 1.96) |
at high population density | 2.53 (1.32, 4.87) | 2.62 (1.46, 4.70) | 1.83 (1.09, 3.07) |
>14 days from 100th case to quarantine | 1.54 (1.01, 2.35) | 1.23 (0.78, 1.92) | 1.57 (1.01, 2.43) |
Hospital beds per 1000 individuals | 0.85 (0.78, 0.92) | 0.84 (0.77, 0.90) | 0.58 (0.45, 0.74) |
Percent population >70 years | 1.15 (1.08, 1.23) | 1.12 (1.03, 1.20) | 1.13 (1.07, 1.20) |
CT scanners per 1 million individuals (log) | 0.49 (0.34, 0.67) | 0.44 (0.32, 0.60) | 0.67 (0.46, 0.98) |
Date of 100th case (days) | - | 0.96 (0.92, 0.99) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; St. Pierre, J.M.; Pickering, T.A.; Demirjian, N.L.; Fields, B.K.K.; Desai, B.; Gholamrezanezhad, A. Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country. Int. J. Environ. Res. Public Health 2020, 17, 8189. https://doi.org/10.3390/ijerph17218189
Pan J, St. Pierre JM, Pickering TA, Demirjian NL, Fields BKK, Desai B, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country. International Journal of Environmental Research and Public Health. 2020; 17(21):8189. https://doi.org/10.3390/ijerph17218189
Chicago/Turabian StylePan, Jennifer, Joseph Marie St. Pierre, Trevor A. Pickering, Natalie L. Demirjian, Brandon K.K. Fields, Bhushan Desai, and Ali Gholamrezanezhad. 2020. "Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country" International Journal of Environmental Research and Public Health 17, no. 21: 8189. https://doi.org/10.3390/ijerph17218189
APA StylePan, J., St. Pierre, J. M., Pickering, T. A., Demirjian, N. L., Fields, B. K. K., Desai, B., & Gholamrezanezhad, A. (2020). Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Variation in Case Fatality Rate by Country. International Journal of Environmental Research and Public Health, 17(21), 8189. https://doi.org/10.3390/ijerph17218189