Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Measures
2.4. Procedure
2.5. Data Analyses
3. Results
3.1. Psychometric Properties of WAI-TECH-SF
3.2. Differences in WAI-TECH-SF Scores According to Socio-Demographic Variables, Initial Severity on PHQ Scores, Preference for the Treatment Offered, and Expectations and Credibility towards the Treatment
An Exploratory Multiple Regression Analysis: Socio-Demographic Variables, Initial Severity on PHQ Scores, Preference for the Treatment Offered, and Expectations and Credibility towards the Treatment as Predictors of WAI-TECH-SF Scores
3.3. Predictive Models: Are Changes in PHQ Scores and Satisfaction with the Treatment Predicted by WAI-TECH-SF Scores?
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cameron, S.K.; Rodgers, J.; Dagnan, D. The relationship between the therapeutic alliance and clinical outcomes in cognitive behaviour therapy for adults with depression: A meta-analytic review. Clin. Psychol. Psychother. 2018, 25, 446–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, A.O.; Del Re, A.C.; Flückiger, C.; Symonds, D. Alliance in individual psychotherapy. Psychotherapy 2011, 48, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Flückiger, C.; Del Re, A.C.; Wampold, B.E.; Horvath, A.O. The alliance in adult psychotherapy: A meta-analytic synthesis. Psychotherapy 2018, 55, 316–340. [Google Scholar] [CrossRef] [PubMed]
- Bordin, E.S. The generalizability of the psychoanalytic concept of the working alliance. Psychol. Psychother. 1979, 16, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Kazdin, A.E.; Blase, S.L. Rebooting Psychotherapy Research and Practice to Reduce the Burden of Mental Illness. Perspect. Psychol. Sci. 2011, 6, 21–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, D.C.; Tomasino, K.N.; Lattie, E.G.; Palac, H.L.; Kwasny, M.J.; Weingardt, K.; Karr, C.J.; Kaiser, S.M.; Rossom, R.C.; Bardsley, L.R.; et al. IntelliCare: An eclectic, skills-based app suite for the treatment of depression and anxiety. J. Med. Internet Res. 2017, 19, e10. [Google Scholar] [CrossRef]
- Erbe, D.; Eichert, H.C.; Riper, H.; Ebert, D.D. Blending face-to-face and Internet-based interventions for the treatment of mental disorders in adults: Systematic review. J. Med. Internet Res. 2017, 19, e306. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.; Richardson, T. Computer-based psychological treatments for depression: A systematic review and meta-analysis. Clin. Psychol. Rev. 2012, 32, 329–342. [Google Scholar] [CrossRef]
- Schröder, J.; Berger, T.; Westermann, S.; Klein, J.P.; Moritz, S. Internet interventions for depression: New developments. Dialogues Clin. Neurosci. 2016, 18, 203–212. [Google Scholar]
- Sztein, D.; Koransky, C.; Fegan, L.; Himelhoch, S. Efficacy of cognitive behavioural therapy delivered over the Internet for depressive symptoms: A systematic review and meta-analysis. J. Telemed. Telecare 2018, 24, 527–539. [Google Scholar] [CrossRef]
- Andersson, G.; Cuijpers, P.; Carlbring, P.; Riper, H.; Hedman, E. Guided internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: A systematic review and meta-analysis. World Psychiatry 2014, 13, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Horn, A.B.; Maercker, A. Internet-based versus face-to-face cognitive-behavioral intervention for depression: A randomized controlled non-inferiority trial. J. Affect. Disord. 2014, 152–154, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Topooco, N.; Riper, H.; Araya, R.; Berking, M.; Brunne, M.; Chevreul, K.; Cieslak, R.; Ebert, D.D.; Etchemendy, E.; Herrero, R.; et al. On behalf of the E-COMPARED consortium. Attitudes towards digital treatment for depression: A European stakeholder survey. Internet Interv. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, L.; Ruwaard, J.; Wiersma, J.; van Oppen, P.; Riper, H. Working alliance in blended versus face-to-face cognitive behavioral treatment for patients with depression in specialized mental health care. J. Clin. Med. 2020, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Horvath, A.O.; Greenberg, L.S. Development and validation of the Working Alliance Inventory. J. Couns. Psychol. 1989, 36, 223–233. [Google Scholar] [CrossRef]
- Hatcher, R.L.; Gillaspy, J.A. Development and validation of a revised short version of the working alliance inventory. Psychother. Res. 2007, 16, 12–25. [Google Scholar] [CrossRef]
- Tracey, T.J.; Kokotovic, A.M. Factor structure of the Working Alliance Inventory. Psychol. Assess. 1989, 1, 207–210. [Google Scholar] [CrossRef]
- Jasper, K.; Weise, C.; Conrad, I.; Andersson, G.; Hiller, W.; Kleinstauber, M. The working alliance in a randomized controlled trial comparing internet-based self-help and face-to-face cognitive behavior therapy for chronic tinnitus. Internet Interv. 2014, 1, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Knaevelsrud, C.; Maercker, A. Internet-based treatment for PTSD reduces distress and facilitates the development of a strong therapeutic alliance: A randomized controlled clinical trial. BMC Psychiatry 2007, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Preschl, B.; Maercker, A.; Wagner, B. The working alliance in a randomized controlled trial comparing online with face-to-face cognitive-behavioral therapy for depression. BMC Psychiatry 2011, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Probst, G.H.; Berger, T.; Flückiger, C. The alliance-outcome relation in internet-based interventions for psychological disorders: A correlational meta-analysis. Verhaltenstherapie 2019, 1–12. [Google Scholar] [CrossRef]
- Clarke, J.; Proudfoot, J.; Whitton, A.; Birch, M.R.; Boyd, M.; Parker, G.; Manicavasagar, V.; Hadzi-Pavlovic, D.; Fogarty, A. Therapeutic alliance with a fully automated mobile phone and web-based intervention: Secondary analysis of a randomized controlled trial. JMIR Ment. Health 2016, 3, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihlaja, S.; Stenberg, J.H.; Joutsenniemi, K.; Mehik, H.; Ritola, V.; Joffe, G. Therapeutic alliance in guided internet therapy programs for depression and anxiety disorders–a systematic review. Internet Interv. 2018, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Penedo, J.M.; Babl, A.M.; Holtforth, M.G.; Hohagen, F.; Krieger, T.; Lutz, W.; Meyer, B.; Moritz, S.; Klein, J.P.; Berger, T. The association of therapeutic alliance with long-term outcome in a guided Internet Intervention for depression: Secondary analysis from a randomized control trial. J. Med. Internet Res. 2020, 22, e15824. [Google Scholar] [CrossRef] [PubMed]
- Miragall, M.; Baños, R.M.; Cebolla, A.; Botella, C. Working alliance inventory applied to virtual and augmented reality (WAI-VAR): Psychometrics and therapeutic outcomes. Front Psychol. 2015, 6, 1531. [Google Scholar] [CrossRef]
- Heim, E.; Roetger, A.; Lorenz, N.; Maercker, A. Working alliance with an avatar: How far can we go with internet interventions? Internet Interv. 2018, 11, 41–46. [Google Scholar] [CrossRef]
- Berger, T.; Boettcher, J.; Caspar, F. Internet-based guided self-help for several anxiety disorders: A randomized controlled trial comparing a tailored with a standardized disorder-specific approach. Psychotherapy 2014, 51, 207–219. [Google Scholar] [CrossRef]
- Berry, K.; Salter, A.; Morris, R.; James, S.; Bucci, S. Assessing therapeutic alliance in the context of mHealth interventions for mental health problems: Development of the mobile Agnew relationship measure (mARM) questionnaire. J. Med. Internet Res. 2018, 20, e90. [Google Scholar] [CrossRef]
- Kiluk, B.D.; Serafini, K.; Frankforter, T.; Nich, C.; Carroll, K.M. Only connect: The working alliance in computer-based cognitive behavioral therapy. Behav. Res. 2014, 63, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Vernmark, K.; Hesser, H.; Topooco, N.; Berger, T.; Riper, H.; Luuk, L.; Backlund, L.; Carlbring, P.; Andersson, G. Working alliance as a predictor of change in depression during blended cognitive behaviour therapy. Cogn. Behav. 2019, 48, 285–299. [Google Scholar] [CrossRef]
- Kleiboer, A.; Smit, J.; Bosmans, J.; Ruwaard, J.; Andersson, G.; Topooco, N.; Berger, T.; Krieger, T.; Botella, C.; Baños, R.; et al. European COMPARative Effectiveness research on blended Depression treatment versus treatment-as-usual (E-COMPARED): Study protocol for a randomized controlled, non-inferiority trial in eight European countries. Trials 2016, 17, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, DSM IV-4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Levis, B.; Benedetti, A.; Thombs, B.D. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. BMJ 2019, 365. [Google Scholar] [CrossRef] [Green Version]
- Wittkampf, K.A.; Naeije, L.; Schene, A.H.; Huyser, J.; van Weert, H.C. Diagnostic accuracy of the mood module of the Patient Health Questionnaire: A systematic review. Gen. Hosp. Psychiatry 2007, 29, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Devilly, G.J.; Borkovec, T.D. Psychometric properties of the credibility/expectancy questionnaire. J. Behav. Exp. Psychiatry 2000, 31, 73–86. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Attkisson, C.C.; Stegner, B.L. Assessment of patient satisfaction: Development and refinement of a service evaluation questionnaire. Eval. Program Plan. 1983, 6, 299–314. [Google Scholar] [CrossRef]
- Hambleton, R.K.; Patsula, L. Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. J. Appl. Test. Technol. 1999, 1, 1–12. [Google Scholar]
- Schafer, J.L. Analysis of Incomplete Multivariate Data. In Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1997; Volume 72. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- O’Connor, B.P. SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behav. Res. Methods Instrum. Comput. 2000, 32, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2019, 2, 1–38. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural Equation Models with Non Normal Variables: Problems and Remedies. In Structural Equation Modeling: Concepts, Issues, and Applications, 1st ed.; Hoyle, R.H., Ed.; Sage Publications: Thousand Oaks, CA, USA, 1995; pp. 56–75. [Google Scholar]
- Russell, D.W. In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Pers. Soc. Psychol. Bull. 2002, 28, 1629–1646. [Google Scholar] [CrossRef]
- Fabrigar, L.R.; Wegener, D.T. Exploratory Factor Analysis; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Henson, P.; Peck, P.; Torous, J. Considering the therapeutic alliance in digital mental health interventions. Harv. Rev. Psychiatry 2019, 27, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Miloff, A.; Carlbring, P.; Hamilton, W.; Andersson, G.; Reuterskiöld, L.; Lindner, P. Measuring alliance toward embodied virtual therapists in the era of automated treatments with the virtual therapist alliance scale (VTAS): Development and psychometric evaluation. J. Med. Internet Res. 2020, 22, e16660. [Google Scholar] [CrossRef]
- Warmerdam, L.; Van Straten, A.; Twisk, J.; Cuijpers, P. Predicting outcome of Internet-based treatment for depressive symptoms. Psychother. Res. 2013, 23, 559–567. [Google Scholar] [CrossRef]
- Batterham, P.J.; Calear, A.L. Preferences for internet-based mental health interventions in an adult online sample: Findings from an online community survey. JMIR Ment. Health 2017, 4, e26. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Beneyto-Arrojo, M.J.; Gutierrez, E.; Boot, W.R.; Charness, N. A spanish adaptation of the computer and mobile device proficiency questionnaires (CPQ and MDPQ) for older adults. Front Psychol. 2019, 10, 1165. [Google Scholar] [CrossRef]
- Mitzner, T.L.; Savla, J.; Boot, W.R.; Sharit, J.; Charness, N.; Czaja, S.J.; Rogers, W.A. Technology adoption by older adults: Findings from the PRISM trial. Gerontologist 2019, 59, 34–44. [Google Scholar] [CrossRef]
- Ng, Q.X.; Chee, K.T.; De Deyn, M.L.Z.Q.; Chua, Z. Staying connected during the COVID-19 pandemic. Int. J. Soc. Psychiatry 2020, 66, 519–520. [Google Scholar] [CrossRef] [PubMed]
Mandatory Modules | Additional Modules | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | Platform | Duration | Online/ Face-to-Face Sessions | Session Sequence | PE | CR | BA | RP | Problem Solving | Physical Exercise | Other |
Netherlands | Moodbuster | 20 weeks | 10/10 | Alternate | X | X | X | X | X | X | |
France | Moodbuster | 16 weeks | 8/8 | Alternate | X | X | X | X | X | X | |
Poland | Moodbuster | 6–10 weeks | 6/6 | Alternate | X | X | X | X | X | X | |
United Kingdom | Moodbuster | 11 weeks | 5/6 | Alternate | X | X | X | X | X | X | |
Switzerland | Deprexis | 18 weeks | 9/9 | Alternate | X | X | X | X | X | X | X |
Sweden | Itherapi | 12 weeks | 8/4 | Alternate | X | X | X | X | |||
Spain | Smiling is fun | 10 weeks | 8/3 | 1-4-1-4-1 | X | X | X | X | X | ||
Germany | Moodbuster | 10–13 weeks | 10/5 | Alternate | X | X | X | X | X | X |
Skewness Index | Kurtosis Index | M (SD) | λ | h2 | |
---|---|---|---|---|---|
Item 1. As a result of these sessions using the program____ I am clearer as to how I might be able to change. | −0.72 | 0.19 | 5.11 (1.40) | 0.76 | 0.58 |
Item 2. What I am doing with the program____ gives me new ways of looking at my problem. | −0.56 | −0.40 | 4.89 (1.48) | 0.88 | 0.77 |
Item 3. I believe that I am a good candidate for the program___. | −0.50 | −0.36 | 4.84 (1.46) | 0.86 | 0.74 |
Item 4. The program___ and I collaborate on setting goals for my therapy. | −0.47 | −0.58 | 4.72 (1.72) | 0.87 | 0.75 |
Item 5. The program___ and I respect each other. | −0.57 | −0.28 | 4.94 (1.58) | 0.84 | 0.70 |
Item 6. The program____ and I are working towards mutually agreed upon goals. | −0.64 | −0.05 | 5.04 (1.48) | 0.85 | 0.72 |
Item 7. I feel that the program____ appreciates me. | −0.35 | −0.75 | 4.44 (1.74) | 0.81 | 0.67 |
Item 8. The program___ and I agree on what is important for me to work on. | −0.62 | −0.25 | 4.84 (1.61) | 0.85 | 0.73 |
Item 9. I feel the program_____ cares about me even when I do things that he/she does not approve of. | −0.61 | −0.13 | 4.91 (1.62) | 0.89 | 0.78 |
Item 10. I feel that the things I do with the program___ will help me to accomplish the changes that I want. | −0.48 | −0.34 | 4.56 (1.54) | 0.87 | 0.76 |
Item 11. The program___ and I have established a good understanding of the kind of changes that would be good for me. | −0.66 | −0.07 | 4.93 (1.55) | 0.91 | 0.83 |
Item 12. I believe the way that the program___ and I are working with my problem is correct. | −0.52 | −0.43 | 4.62 (1.65) | 0.89 | 0.79 |
Independent-Sample t-Tests/ One-Way ANOVAs | N | M | SD | |
---|---|---|---|---|
Total sample | 193 | 57.84 | 16.39 | |
Sex | t(191) = 0.49, p = 0.627, Cohen’s d = 0.07 | |||
Men | 69 | 57.07 | 15.03 | |
Women | 124 | 58.27 | 17.14 | |
Age-range | F(2,190) = 1.75, p = 0.177, η2p = 0.02 | |||
18–34 | 70 | 55.84 | 17.09 | |
35–49 | 66 | 57.12 | 17.89 | |
>50 | 57 | 61.13 | 13.14 | |
Level of education | F(2,190) = 3.21, p = 0.043, η2p = 0.03 | |||
Low | 24 | 50.01 | 15.06 | |
Medium | 61 | 58.72 | 15.52 | |
High | 108 | 59.08 | 16.80 | |
Initial severity of depression | F(3,189) = 0.91, p = 0.436, η2p = 0.01 | |||
Mild | 21 | 59.86 | 16.16 | |
Moderate | 64 | 56.50 | 16.38 | |
Moderate-Severe | 71 | 56.66 | 17.03 | |
Severe | 37 | 61.27 | 15.27 | |
Preference for any of the treatments offered | F(2,190) = 1.66, p = 0.194, η2p = 0.02 | |||
No preference | 54 | 57.78 | 16.09 | |
Blended | 107 | 56.48 | 16.09 | |
Treatment as usual | 32 | 62.47 | 17.53 | |
Expectations towards the treatment | F(2,182) = 1.34, p = 0.265, η2p = 0.02 | |||
Low | 34 | 59.84 | 15.41 | |
Medium | 119 | 57.92 | 16.82 | |
High | 32 | 53.47 | 16.18 | |
Credibility towards the treatment | F(2,183) = 0.57, p = 0.567, η2p = 0.01 | |||
Low | 28 | 56.38 | 17.19 | |
Medium | 126 | 57.13 | 15.65 | |
High | 32 | 60.34 | 19.13 |
R | R2 | B | SE | β | t | |
---|---|---|---|---|---|---|
Change in PHQ scores | ||||||
Constant | 0.186 | 1.829 | ||||
WAI-TECH | 0.268 | 0.072 | −0.115 | 0.030 | −0.268 | 3.797 *** |
Satisfaction with the treatment | ||||||
Constant | 12.929 | 0.951 | 13.601 *** | |||
WAI-TECH | 0.707 | 0.497 | 0.214 | 0.016 | 0.707 | 13.621 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero, R.; Vara, M.D.; Miragall, M.; Botella, C.; García-Palacios, A.; Riper, H.; Kleiboer, A.; Baños, R.M. Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6169. https://doi.org/10.3390/ijerph17176169
Herrero R, Vara MD, Miragall M, Botella C, García-Palacios A, Riper H, Kleiboer A, Baños RM. Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes. International Journal of Environmental Research and Public Health. 2020; 17(17):6169. https://doi.org/10.3390/ijerph17176169
Chicago/Turabian StyleHerrero, Rocío, Mª Dolores Vara, Marta Miragall, Cristina Botella, Azucena García-Palacios, Heleen Riper, Annet Kleiboer, and Rosa Mª Baños. 2020. "Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes" International Journal of Environmental Research and Public Health 17, no. 17: 6169. https://doi.org/10.3390/ijerph17176169