Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Measures
2.4. Procedure
2.5. Data Analyses
3. Results
3.1. Psychometric Properties of WAI-TECH-SF
3.2. Differences in WAI-TECH-SF Scores According to Socio-Demographic Variables, Initial Severity on PHQ Scores, Preference for the Treatment Offered, and Expectations and Credibility towards the Treatment
An Exploratory Multiple Regression Analysis: Socio-Demographic Variables, Initial Severity on PHQ Scores, Preference for the Treatment Offered, and Expectations and Credibility towards the Treatment as Predictors of WAI-TECH-SF Scores
3.3. Predictive Models: Are Changes in PHQ Scores and Satisfaction with the Treatment Predicted by WAI-TECH-SF Scores?
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cameron, S.K.; Rodgers, J.; Dagnan, D. The relationship between the therapeutic alliance and clinical outcomes in cognitive behaviour therapy for adults with depression: A meta-analytic review. Clin. Psychol. Psychother. 2018, 25, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.O.; Del Re, A.C.; Flückiger, C.; Symonds, D. Alliance in individual psychotherapy. Psychotherapy 2011, 48, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Flückiger, C.; Del Re, A.C.; Wampold, B.E.; Horvath, A.O. The alliance in adult psychotherapy: A meta-analytic synthesis. Psychotherapy 2018, 55, 316–340. [Google Scholar] [CrossRef] [PubMed]
- Bordin, E.S. The generalizability of the psychoanalytic concept of the working alliance. Psychol. Psychother. 1979, 16, 252–260. [Google Scholar] [CrossRef]
- Kazdin, A.E.; Blase, S.L. Rebooting Psychotherapy Research and Practice to Reduce the Burden of Mental Illness. Perspect. Psychol. Sci. 2011, 6, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.C.; Tomasino, K.N.; Lattie, E.G.; Palac, H.L.; Kwasny, M.J.; Weingardt, K.; Karr, C.J.; Kaiser, S.M.; Rossom, R.C.; Bardsley, L.R.; et al. IntelliCare: An eclectic, skills-based app suite for the treatment of depression and anxiety. J. Med. Internet Res. 2017, 19, e10. [Google Scholar] [CrossRef]
- Erbe, D.; Eichert, H.C.; Riper, H.; Ebert, D.D. Blending face-to-face and Internet-based interventions for the treatment of mental disorders in adults: Systematic review. J. Med. Internet Res. 2017, 19, e306. [Google Scholar] [CrossRef]
- Richards, D.; Richardson, T. Computer-based psychological treatments for depression: A systematic review and meta-analysis. Clin. Psychol. Rev. 2012, 32, 329–342. [Google Scholar] [CrossRef]
- Schröder, J.; Berger, T.; Westermann, S.; Klein, J.P.; Moritz, S. Internet interventions for depression: New developments. Dialogues Clin. Neurosci. 2016, 18, 203–212. [Google Scholar]
- Sztein, D.; Koransky, C.; Fegan, L.; Himelhoch, S. Efficacy of cognitive behavioural therapy delivered over the Internet for depressive symptoms: A systematic review and meta-analysis. J. Telemed. Telecare 2018, 24, 527–539. [Google Scholar] [CrossRef]
- Andersson, G.; Cuijpers, P.; Carlbring, P.; Riper, H.; Hedman, E. Guided internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: A systematic review and meta-analysis. World Psychiatry 2014, 13, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Horn, A.B.; Maercker, A. Internet-based versus face-to-face cognitive-behavioral intervention for depression: A randomized controlled non-inferiority trial. J. Affect. Disord. 2014, 152–154, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Topooco, N.; Riper, H.; Araya, R.; Berking, M.; Brunne, M.; Chevreul, K.; Cieslak, R.; Ebert, D.D.; Etchemendy, E.; Herrero, R.; et al. On behalf of the E-COMPARED consortium. Attitudes towards digital treatment for depression: A European stakeholder survey. Internet Interv. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, L.; Ruwaard, J.; Wiersma, J.; van Oppen, P.; Riper, H. Working alliance in blended versus face-to-face cognitive behavioral treatment for patients with depression in specialized mental health care. J. Clin. Med. 2020, 9, 347. [Google Scholar] [CrossRef]
- Horvath, A.O.; Greenberg, L.S. Development and validation of the Working Alliance Inventory. J. Couns. Psychol. 1989, 36, 223–233. [Google Scholar] [CrossRef]
- Hatcher, R.L.; Gillaspy, J.A. Development and validation of a revised short version of the working alliance inventory. Psychother. Res. 2007, 16, 12–25. [Google Scholar] [CrossRef]
- Tracey, T.J.; Kokotovic, A.M. Factor structure of the Working Alliance Inventory. Psychol. Assess. 1989, 1, 207–210. [Google Scholar] [CrossRef]
- Jasper, K.; Weise, C.; Conrad, I.; Andersson, G.; Hiller, W.; Kleinstauber, M. The working alliance in a randomized controlled trial comparing internet-based self-help and face-to-face cognitive behavior therapy for chronic tinnitus. Internet Interv. 2014, 1, 49–57. [Google Scholar] [CrossRef]
- Knaevelsrud, C.; Maercker, A. Internet-based treatment for PTSD reduces distress and facilitates the development of a strong therapeutic alliance: A randomized controlled clinical trial. BMC Psychiatry 2007, 7, 13. [Google Scholar] [CrossRef]
- Preschl, B.; Maercker, A.; Wagner, B. The working alliance in a randomized controlled trial comparing online with face-to-face cognitive-behavioral therapy for depression. BMC Psychiatry 2011, 11, 189. [Google Scholar] [CrossRef]
- Probst, G.H.; Berger, T.; Flückiger, C. The alliance-outcome relation in internet-based interventions for psychological disorders: A correlational meta-analysis. Verhaltenstherapie 2019, 1–12. [Google Scholar] [CrossRef]
- Clarke, J.; Proudfoot, J.; Whitton, A.; Birch, M.R.; Boyd, M.; Parker, G.; Manicavasagar, V.; Hadzi-Pavlovic, D.; Fogarty, A. Therapeutic alliance with a fully automated mobile phone and web-based intervention: Secondary analysis of a randomized controlled trial. JMIR Ment. Health 2016, 3, e10. [Google Scholar] [CrossRef] [PubMed]
- Pihlaja, S.; Stenberg, J.H.; Joutsenniemi, K.; Mehik, H.; Ritola, V.; Joffe, G. Therapeutic alliance in guided internet therapy programs for depression and anxiety disorders–a systematic review. Internet Interv. 2018, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Penedo, J.M.; Babl, A.M.; Holtforth, M.G.; Hohagen, F.; Krieger, T.; Lutz, W.; Meyer, B.; Moritz, S.; Klein, J.P.; Berger, T. The association of therapeutic alliance with long-term outcome in a guided Internet Intervention for depression: Secondary analysis from a randomized control trial. J. Med. Internet Res. 2020, 22, e15824. [Google Scholar] [CrossRef] [PubMed]
- Miragall, M.; Baños, R.M.; Cebolla, A.; Botella, C. Working alliance inventory applied to virtual and augmented reality (WAI-VAR): Psychometrics and therapeutic outcomes. Front Psychol. 2015, 6, 1531. [Google Scholar] [CrossRef]
- Heim, E.; Roetger, A.; Lorenz, N.; Maercker, A. Working alliance with an avatar: How far can we go with internet interventions? Internet Interv. 2018, 11, 41–46. [Google Scholar] [CrossRef]
- Berger, T.; Boettcher, J.; Caspar, F. Internet-based guided self-help for several anxiety disorders: A randomized controlled trial comparing a tailored with a standardized disorder-specific approach. Psychotherapy 2014, 51, 207–219. [Google Scholar] [CrossRef]
- Berry, K.; Salter, A.; Morris, R.; James, S.; Bucci, S. Assessing therapeutic alliance in the context of mHealth interventions for mental health problems: Development of the mobile Agnew relationship measure (mARM) questionnaire. J. Med. Internet Res. 2018, 20, e90. [Google Scholar] [CrossRef]
- Kiluk, B.D.; Serafini, K.; Frankforter, T.; Nich, C.; Carroll, K.M. Only connect: The working alliance in computer-based cognitive behavioral therapy. Behav. Res. 2014, 63, 139–146. [Google Scholar] [CrossRef]
- Vernmark, K.; Hesser, H.; Topooco, N.; Berger, T.; Riper, H.; Luuk, L.; Backlund, L.; Carlbring, P.; Andersson, G. Working alliance as a predictor of change in depression during blended cognitive behaviour therapy. Cogn. Behav. 2019, 48, 285–299. [Google Scholar] [CrossRef]
- Kleiboer, A.; Smit, J.; Bosmans, J.; Ruwaard, J.; Andersson, G.; Topooco, N.; Berger, T.; Krieger, T.; Botella, C.; Baños, R.; et al. European COMPARative Effectiveness research on blended Depression treatment versus treatment-as-usual (E-COMPARED): Study protocol for a randomized controlled, non-inferiority trial in eight European countries. Trials 2016, 17, 387. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, DSM IV-4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Levis, B.; Benedetti, A.; Thombs, B.D. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. BMJ 2019, 365. [Google Scholar] [CrossRef]
- Wittkampf, K.A.; Naeije, L.; Schene, A.H.; Huyser, J.; van Weert, H.C. Diagnostic accuracy of the mood module of the Patient Health Questionnaire: A systematic review. Gen. Hosp. Psychiatry 2007, 29, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Devilly, G.J.; Borkovec, T.D. Psychometric properties of the credibility/expectancy questionnaire. J. Behav. Exp. Psychiatry 2000, 31, 73–86. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Attkisson, C.C.; Stegner, B.L. Assessment of patient satisfaction: Development and refinement of a service evaluation questionnaire. Eval. Program Plan. 1983, 6, 299–314. [Google Scholar] [CrossRef]
- Hambleton, R.K.; Patsula, L. Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. J. Appl. Test. Technol. 1999, 1, 1–12. [Google Scholar]
- Schafer, J.L. Analysis of Incomplete Multivariate Data. In Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1997; Volume 72. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- O’Connor, B.P. SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behav. Res. Methods Instrum. Comput. 2000, 32, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2019, 2, 1–38. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural Equation Models with Non Normal Variables: Problems and Remedies. In Structural Equation Modeling: Concepts, Issues, and Applications, 1st ed.; Hoyle, R.H., Ed.; Sage Publications: Thousand Oaks, CA, USA, 1995; pp. 56–75. [Google Scholar]
- Russell, D.W. In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Pers. Soc. Psychol. Bull. 2002, 28, 1629–1646. [Google Scholar] [CrossRef]
- Fabrigar, L.R.; Wegener, D.T. Exploratory Factor Analysis; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Henson, P.; Peck, P.; Torous, J. Considering the therapeutic alliance in digital mental health interventions. Harv. Rev. Psychiatry 2019, 27, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Miloff, A.; Carlbring, P.; Hamilton, W.; Andersson, G.; Reuterskiöld, L.; Lindner, P. Measuring alliance toward embodied virtual therapists in the era of automated treatments with the virtual therapist alliance scale (VTAS): Development and psychometric evaluation. J. Med. Internet Res. 2020, 22, e16660. [Google Scholar] [CrossRef]
- Warmerdam, L.; Van Straten, A.; Twisk, J.; Cuijpers, P. Predicting outcome of Internet-based treatment for depressive symptoms. Psychother. Res. 2013, 23, 559–567. [Google Scholar] [CrossRef]
- Batterham, P.J.; Calear, A.L. Preferences for internet-based mental health interventions in an adult online sample: Findings from an online community survey. JMIR Ment. Health 2017, 4, e26. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Beneyto-Arrojo, M.J.; Gutierrez, E.; Boot, W.R.; Charness, N. A spanish adaptation of the computer and mobile device proficiency questionnaires (CPQ and MDPQ) for older adults. Front Psychol. 2019, 10, 1165. [Google Scholar] [CrossRef]
- Mitzner, T.L.; Savla, J.; Boot, W.R.; Sharit, J.; Charness, N.; Czaja, S.J.; Rogers, W.A. Technology adoption by older adults: Findings from the PRISM trial. Gerontologist 2019, 59, 34–44. [Google Scholar] [CrossRef]
- Ng, Q.X.; Chee, K.T.; De Deyn, M.L.Z.Q.; Chua, Z. Staying connected during the COVID-19 pandemic. Int. J. Soc. Psychiatry 2020, 66, 519–520. [Google Scholar] [CrossRef] [PubMed]
Mandatory Modules | Additional Modules | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | Platform | Duration | Online/ Face-to-Face Sessions | Session Sequence | PE | CR | BA | RP | Problem Solving | Physical Exercise | Other |
Netherlands | Moodbuster | 20 weeks | 10/10 | Alternate | X | X | X | X | X | X | |
France | Moodbuster | 16 weeks | 8/8 | Alternate | X | X | X | X | X | X | |
Poland | Moodbuster | 6–10 weeks | 6/6 | Alternate | X | X | X | X | X | X | |
United Kingdom | Moodbuster | 11 weeks | 5/6 | Alternate | X | X | X | X | X | X | |
Switzerland | Deprexis | 18 weeks | 9/9 | Alternate | X | X | X | X | X | X | X |
Sweden | Itherapi | 12 weeks | 8/4 | Alternate | X | X | X | X | |||
Spain | Smiling is fun | 10 weeks | 8/3 | 1-4-1-4-1 | X | X | X | X | X | ||
Germany | Moodbuster | 10–13 weeks | 10/5 | Alternate | X | X | X | X | X | X |
Skewness Index | Kurtosis Index | M (SD) | λ | h2 | |
---|---|---|---|---|---|
Item 1. As a result of these sessions using the program____ I am clearer as to how I might be able to change. | −0.72 | 0.19 | 5.11 (1.40) | 0.76 | 0.58 |
Item 2. What I am doing with the program____ gives me new ways of looking at my problem. | −0.56 | −0.40 | 4.89 (1.48) | 0.88 | 0.77 |
Item 3. I believe that I am a good candidate for the program___. | −0.50 | −0.36 | 4.84 (1.46) | 0.86 | 0.74 |
Item 4. The program___ and I collaborate on setting goals for my therapy. | −0.47 | −0.58 | 4.72 (1.72) | 0.87 | 0.75 |
Item 5. The program___ and I respect each other. | −0.57 | −0.28 | 4.94 (1.58) | 0.84 | 0.70 |
Item 6. The program____ and I are working towards mutually agreed upon goals. | −0.64 | −0.05 | 5.04 (1.48) | 0.85 | 0.72 |
Item 7. I feel that the program____ appreciates me. | −0.35 | −0.75 | 4.44 (1.74) | 0.81 | 0.67 |
Item 8. The program___ and I agree on what is important for me to work on. | −0.62 | −0.25 | 4.84 (1.61) | 0.85 | 0.73 |
Item 9. I feel the program_____ cares about me even when I do things that he/she does not approve of. | −0.61 | −0.13 | 4.91 (1.62) | 0.89 | 0.78 |
Item 10. I feel that the things I do with the program___ will help me to accomplish the changes that I want. | −0.48 | −0.34 | 4.56 (1.54) | 0.87 | 0.76 |
Item 11. The program___ and I have established a good understanding of the kind of changes that would be good for me. | −0.66 | −0.07 | 4.93 (1.55) | 0.91 | 0.83 |
Item 12. I believe the way that the program___ and I are working with my problem is correct. | −0.52 | −0.43 | 4.62 (1.65) | 0.89 | 0.79 |
Independent-Sample t-Tests/ One-Way ANOVAs | N | M | SD | |
---|---|---|---|---|
Total sample | 193 | 57.84 | 16.39 | |
Sex | t(191) = 0.49, p = 0.627, Cohen’s d = 0.07 | |||
Men | 69 | 57.07 | 15.03 | |
Women | 124 | 58.27 | 17.14 | |
Age-range | F(2,190) = 1.75, p = 0.177, η2p = 0.02 | |||
18–34 | 70 | 55.84 | 17.09 | |
35–49 | 66 | 57.12 | 17.89 | |
>50 | 57 | 61.13 | 13.14 | |
Level of education | F(2,190) = 3.21, p = 0.043, η2p = 0.03 | |||
Low | 24 | 50.01 | 15.06 | |
Medium | 61 | 58.72 | 15.52 | |
High | 108 | 59.08 | 16.80 | |
Initial severity of depression | F(3,189) = 0.91, p = 0.436, η2p = 0.01 | |||
Mild | 21 | 59.86 | 16.16 | |
Moderate | 64 | 56.50 | 16.38 | |
Moderate-Severe | 71 | 56.66 | 17.03 | |
Severe | 37 | 61.27 | 15.27 | |
Preference for any of the treatments offered | F(2,190) = 1.66, p = 0.194, η2p = 0.02 | |||
No preference | 54 | 57.78 | 16.09 | |
Blended | 107 | 56.48 | 16.09 | |
Treatment as usual | 32 | 62.47 | 17.53 | |
Expectations towards the treatment | F(2,182) = 1.34, p = 0.265, η2p = 0.02 | |||
Low | 34 | 59.84 | 15.41 | |
Medium | 119 | 57.92 | 16.82 | |
High | 32 | 53.47 | 16.18 | |
Credibility towards the treatment | F(2,183) = 0.57, p = 0.567, η2p = 0.01 | |||
Low | 28 | 56.38 | 17.19 | |
Medium | 126 | 57.13 | 15.65 | |
High | 32 | 60.34 | 19.13 |
R | R2 | B | SE | β | t | |
---|---|---|---|---|---|---|
Change in PHQ scores | ||||||
Constant | 0.186 | 1.829 | ||||
WAI-TECH | 0.268 | 0.072 | −0.115 | 0.030 | −0.268 | 3.797 *** |
Satisfaction with the treatment | ||||||
Constant | 12.929 | 0.951 | 13.601 *** | |||
WAI-TECH | 0.707 | 0.497 | 0.214 | 0.016 | 0.707 | 13.621 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero, R.; Vara, M.D.; Miragall, M.; Botella, C.; García-Palacios, A.; Riper, H.; Kleiboer, A.; Baños, R.M. Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6169. https://doi.org/10.3390/ijerph17176169
Herrero R, Vara MD, Miragall M, Botella C, García-Palacios A, Riper H, Kleiboer A, Baños RM. Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes. International Journal of Environmental Research and Public Health. 2020; 17(17):6169. https://doi.org/10.3390/ijerph17176169
Chicago/Turabian StyleHerrero, Rocío, Mª Dolores Vara, Marta Miragall, Cristina Botella, Azucena García-Palacios, Heleen Riper, Annet Kleiboer, and Rosa Mª Baños. 2020. "Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes" International Journal of Environmental Research and Public Health 17, no. 17: 6169. https://doi.org/10.3390/ijerph17176169
APA StyleHerrero, R., Vara, M. D., Miragall, M., Botella, C., García-Palacios, A., Riper, H., Kleiboer, A., & Baños, R. M. (2020). Working Alliance Inventory for Online Interventions-Short Form (WAI-TECH-SF): The Role of the Therapeutic Alliance between Patient and Online Program in Therapeutic Outcomes. International Journal of Environmental Research and Public Health, 17(17), 6169. https://doi.org/10.3390/ijerph17176169