Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Intervention
2.3. Outcome Measures
2.3.1. Fall Risk Outcomes
2.3.2. Cognitive Outcome
2.4. Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Effects of Combined Physical-Cognitive Training on Fall Risk
3.3. Effects of Combined Physical-Cognitive Training on Cognitive Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35. [Google Scholar] [CrossRef] [Green Version]
- Ku, Y.-C.; Liu, M.-E.; Tsai, Y.-F.; Liu, W.-C.; Lin, S.-L.; Tsai, S.-J. Associated Factors for Falls, Recurrent Falls, and Injurious Falls in Aged Men Living in Taiwan Veterans Homes. Int. J. Gerontol. 2013, 7, 80–84. [Google Scholar] [CrossRef]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Menz, H.B.; Tiedemann, A. A Physiological Profile Approach to Falls Risk Assessment and Prevention. Phys. Ther. 2003, 83, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; Oteng-Amoako, A.; Speechley, M.; Gopaul, K.; Beauchet, O.; Annweiler, C.; Muir-Hunter, S.W. The Motor Signature of Mild Cognitive Impairment: Results from the Gait and Brain Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1415–1421. [Google Scholar] [CrossRef]
- Sherrington, C.; Whitney, J.C.; Lord, S.R.; Herbert, R.D.; Cumming, R.G.; Close, J.C. Effective Exercise for the Prevention of Falls: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef]
- Sherrington, C.; Michaleff, Z.A.; Fairhall, N.; Paul, S.S.; Tiedemann, A.; Whitney, J.; Cumming, R.; Herbert, R.D.; Close, J.C.T.; Lord, S.R. Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1750–1758. [Google Scholar] [CrossRef]
- Eggenberger, P.; Schumacher, V.; Angst, M.; Theill, N.; de Bruin, E.D. Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month randomized controlled trial with a 1-year follow-up. Clin. Interv. Aging 2015, 10, 1335–1349. [Google Scholar] [CrossRef] [Green Version]
- Schoene, D.; Lord, S.R.; Delbaere, K.; Severino, C.; Davies, T.A.; Smith, S.T. A Randomized Controlled Pilot Study of Home-Based Step Training in Older People Using Videogame Technology. PLoS ONE 2013, 8, e57734. [Google Scholar] [CrossRef]
- Theill, N.; Schumacher, V.; Adelsberger, R.; Martin, M.; Jäncke, L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013, 14, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabre, C.; Chamari, K.; Mucci, P.; Massé-Biron, J.; PréFaut, C. Improvement of Cognitive Function by Mental and/or Individualized Aerobic Training in Healthy Elderly Subjects. Int. J. Sports Med. 2002, 23, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Silsupadol, P.; Shumway-Cook, A.; Lugade, V.; Van Donkelaar, P.; Chou, L.-S.; Mayr, U.; Woollacott, M.H. Effects of Single-Task Versus Dual-Task Training on Balance Performance in Older Adults: A Double-Blind, Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2009, 90, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.A.F.; Gates, N.J.; Saigal, N.; Wilson, G.C.; Meiklejohn, J.; Brodaty, H.; Wen, W.; Singh, M.A.F.; Baune, B.T.; Suo, C.; et al. The Study of Mental and Resistance Training (SMART) Study—Resistance Training and/or Cognitive Training in Mild Cognitive Impairment: A Randomized, Double-Blind, Double-Sham Controlled Trial. J. Am. Med. Dir. Assoc. 2014, 15, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Shatil, E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front. Aging Neurosci. 2013, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyman, S.R.; Victor, C.R. Older people’s recruitment, sustained participation, and adherence to falls prevention interventions in institutional settings: A supplement to the Cochrane systematic review. Age Ageing 2011, 40, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.-L.; Lee, C.-H. An Impact Study of the Design of Exergaming Parameters on Body Intensity from Objective and Gameplay-Based Player Experience Perspectives, Based on Balance Training Exergame. PLoS ONE 2013, 8, e69471. [Google Scholar] [CrossRef]
- Pichierri, G.; Murer, K.; De Bruin, E.D. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: A randomized controlled trial. BMC Geriatr. 2012, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Ghanouni, P.; Anderson, S.E.; Touchett, H.; Shirley, R.; Fang, F.; Fang, C. Effects of Exergaming on Balance of Healthy Older Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Games Health J. 2020, 9, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Mansor, N.S.; Chow, C.M.; Halaki, M. Cognitive effects of video games in older adults and their moderators: A systematic review with meta-analysis and meta-regression. Aging Ment. Health 2020, 24, 841–856. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.-N.; Baghaei, N.; Berberich, B.W.; Yue, Y. Health Benefits of Digital Videogames for the Aging Population: A Systematic Review. Games Health J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The Effects of Virtual Reality-based Balance Training on Balance of the Elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-M.; Hsieh, J.S.C.; Chen, Y.-C.; Yang, S.-Y.; Lin, H.-C.K. Effects of Kinect exergames on balance training among community older adults. Medicine 2020, 99, e21228. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Tiedemann, A.; Chapman, K.; Munro, B.; Murray, S.M.; Gerontology, M.; Ther, G.R.; Sherrington, C. The Effect of an Individualized Fall Prevention Program on Fall Risk and Falls in Older People: A Randomized, Controlled Trial. J. Am. Geriatr. Soc. 2005, 53, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Smith-Ray, R.L.; Hughes, S.L.; Prohaska, T.R.; Little, D.M.; Jurivich, D.A.; Hedeker, D. Impact of Cognitive Training on Balance and Gait in Older Adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2015, 70, 357–366. [Google Scholar] [CrossRef]
- Lipardo, D.S.; Aseron, A.M.C.; Kwan, M.M.-S.; Tsang, W.W. Effect of Exercise and Cognitive Training on Falls and Fall-Related Factors in Older Adults With Mild Cognitive Impairment: A Systematic Review. Arch. Phys. Med. Rehabil. 2017, 98, 2079–2096. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.D.; Guo, L.; Kang, D.; Xiong, S. Exergame technology and interactive interventions for elderly fall prevention: A systematic literature review. Appl. Ergon. 2017, 65, 570–581. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and Gender-Related Test Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.T.; Bloch, M.L.; Jønsson, L.R.; Jakobsen, T.L. Interrater reliability of the standardized Timed Up and Go Test when used in hospitalized and community-dwelling older individuals. Physiother. Res. Int. 2019, 24, e1769. [Google Scholar] [CrossRef]
- Tallberg, I.M.; Ivachova, E.; Tinghag, K.J.; Östberg, P. Swedish norms for word fluency tests: FAS, animals and verbs. Scand. J. Psychol. 2008, 49, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; Almeida, Q.J.; Bherer, L.; Burhan, A.M.; Camicioli, R.; Doyon, J.; Fraser, S.; Muir-Hunter, S.; Li, K.Z.H.; Liu-Ambrose, T.; et al. Consensus on Shared Measures of Mobility and Cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA). J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 897–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, S.; Montero-Odasso, M.; Bherer, L.; Almeida, Q.; Fraser, S.; Muir-Hunter, S.; Li, K.; Liu-Ambrose, T.; McGibbon, C.A.; McIlroy, W.; et al. Guidelines for Gait Assessments in the Canadian Consortium on Neurodegeneration in Aging (CCNA). Can. Geriatr. J. 2018, 21, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeney, J.; Savva, G.M.; O’Regan, C.; King-Kallimanis, B.; Cronin, H.; Kenny, R.A. Measurement Error, Reliability, and Minimum Detectable Change in the Mini-Mental State Examination, Montreal Cognitive Assessment, and Color Trails Test among Community Living Middle-Aged and Older Adults. J. Alzheimers Dis. 2016, 53, 1107–1114. [Google Scholar] [CrossRef]
- Tangwongchai, S.; Phanasathit, M.; Charernboon, T.; Akkayagorn, L.; Hemrungrojn, S.; Phanthumchinda, K.; Nasreddine, Z. The validity of Thai version of the Montreal Cognitive Assessment (MoCA-T). Dement. Neuropsychol. 2009, 3, 172. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Taylor, D.; Hale, L.; Schluter, P.J.; Waters, D.L.; Binns, E.E.; McCracken, H.; McPherson, K.M.; Wolf, S.L. Effectiveness of Tai Chi as a Community-Based Falls Prevention Intervention: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2012, 60, 841–848. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Oswald, W.D.; Gunzelmann, T.; Rupprecht, R.; Hagen, B. Differential effects of single versus combined cognitive and physical training with older adults: The SimA study in a 5-year perspective. Eur. J. Ageing 2006, 3, 179–192. [Google Scholar] [CrossRef]
- Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: A randomized controlled trial. BMC Geriatr. 2015, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Okuma, N.; Westen, S.C.; Merz, M.E.; Pence, B.D.; Woods, J.A.; Kramer, A.F.; et al. Exergaming and Older Adult Cognition. Am. J. Prev. Med. 2012, 42, 109–119. [Google Scholar] [CrossRef] [PubMed]
Cognitive Domain | Training Purpose | Training Description |
---|---|---|
Speed Processing Game 1: Fruits hunter | To enhance response ability and speed of processing via stepping task | Step on the target presented as quickly as possible |
Memory & visuo-spatial Game 2: Where am I? | To enhance semantic memory and visuo-spatial ability via visual sense | Stepping in concurrence with remembering the objects and its location presented Note: Delayed recall was assessed at the end of the game |
Executive function -inhibition -speed processing -attention Game 3: Whack a mole | To improve selective attention, visual attention, speed of processing, and inhibition | Respond correctly to different rules of the game as quickly as possible Rules: - mole; step on the target 1 time - mole with helmet; step on the target twice - bat; step on the target 1 time - bat with helmet; step on the target twice - bomb; do not step on the target |
Sequencing & planning Game 4: Sky fall | To improve sequencing and planning ability | Collect dropping objects into the basket. Several objects with different values (points) were dropping at the same time. The goal was to gain as high points as possible. |
Episodic Memory Game 5: Crossing poison river | To improve episodic memory via auditory sense | Listen to a short story and remember the content of the story as much as possible while standing on one leg Note: Memory test (recall questions regarding the story’s content) was examined at the end of the game |
Characteristics | Intervention Group (n = 20) | Control Group (n = 20) | p-Value # |
---|---|---|---|
Age (years) | 70.21 ± 4.18 | 69.40 ± 3.38 | 0.509 |
Gender (male:female) | 3:17 | 4:16 | 0.740 |
Height (cm) | 155.95 ± 6.12 | 156.45 ± 7.34 | 0.819 |
Weight (kg) | 57.45 ± 8.83 | 57.58 ± 9.48 | 0.964 |
Types of medication (n) | 0.47 ± 0.70 | 0.70 ± 1.03 | 0.429 |
Falls in the past year (n) | 5 | 4 | 0.699 |
Education (years) | 12.79 ± 5.15 | 11.20 ± 4.80 | 0.325 |
MSET 10 (score) | 26.26 ± 2.10 | 25.60 ± 2.90 | 0.424 |
TGDS (score) | 1.16 ± 0.90 | 1.45 ± 1.57 | 0.479 |
Variables | Intervention Group (n = 19) | Control Group (n = 20) | Group × Time # | ||||
---|---|---|---|---|---|---|---|
Baseline | 12-Week | Baseline | 12-Week | F (1, 37) | p-Value | ηp2 | |
PPA Composite Score | 0.79 ± 0.92 | 0.14 ± 0.79 a,b | 0.59 ± 0.70 | 0.81 ± 0.86 | 11.695 | 0.002 | 0.240 |
PPA sub-components | |||||||
| 20.74 ± 1.82 | 21.26 ± 1.28 | 19.95 ± 2.48 | 20.70 ± 2.90 | 0.128 | 0.722 | 0.003 |
| 264.02 ± 34 12 | 245.83 ± 31.13 b | 257.40 ± 37.30 | 268.74 ± 51.39 | 7.439 | 0.010 | 0.167 |
| 148.47 ± 63.76 | 106.53 ± 37 58 a,b | 118.70 ± 36.92 | 149.30 ± 50.29 b | 14.940 | 0.001 | 0.288 |
| 1.79 ± 0.86 | 1.85 ± 1.13 | 1.92 ± 0.89 | 1.47 ± 0.84 | 1.599 | 0.214 | 0.041 |
| 22.70 ± 7.60 | 24.63 ± 4.17 | 22.75 ± 7.11 | 21.15 ± 5.96 | 3.749 | 0.061 | 0.092 |
TUG single task (s) | 7.53 ± 0.10 | 6.86 ± 1.03 b | 7.61 ± 1.56 | 7.48 ± 1.31 | 6.510 | 0.015 | 0.150 |
TUG dual task (s) | 9.57 ± 2.62 | 7.80 ± 1.50 a,b | 9.26 ± 2.60 | 8.96 ± 1.93 | 5.464 | 0.025 | 0.129 |
Variables | Intervention Group (n = 19) | Control Group (n = 20) | Group × Time # | ||||
---|---|---|---|---|---|---|---|
Baseline | 12-week | Baseline | 12-week | F (1, 37) | p-Value | ηp2 | |
MoCA (max. 30 points) | 24.58 ± 3.53 | 26.37 ± 2.59 a,b | 24.40 ± 3.20 | 23.05 ±2.78 b | 15.743 | 0.001 | 0.298 |
MoCA subtests | |||||||
| 4.26 ± 0.65 | 4.68 ± 0.48 a | 4.05 ± 1.10 | 3.80 ± 1.10 | 4.722 | 0.036 | 0.113 |
| 5.05 ± 0.97 | 5.68 ± 0.58 a,b | 5.00 ± 1.12 | 4.50 ± 1.24 b | 14.692 | 0.001 | 0.284 |
| 2.95 ± 0.23 | 3.00 ± 0.00 | 2.95 ± 0.22 | 2.90 ± 0.31 | 2.001 | 0.166 | 0.051 |
| 1.37 ± 1.15 | 1.74 ± 1.15 b | 1.40 ± 1.04 | 1.25 ± 0.91 | 4.620 | 0.038 | 0.111 |
| 1.58 ± 0.61 | 1.68 ± 0.67 a | 1.45 ± 0.69 | 1.00 ± 0.86 b | 5.931 | 0.020 | 0.138 |
| 3.21 ± 1.81 | 3.47 ± 1.35 | 3.20 ± 1.82 | 3.20 ± 1.70 | 0.212 | 0.648 | 0.006 |
| 5.89 ± 0.32 | 6.00 ± 0.00 | 5.95 ± 0.22 | 5.95 ± 0.22 | 1.054 | 0.311 | 0.028 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phirom, K.; Kamnardsiri, T.; Sungkarat, S. Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 6079. https://doi.org/10.3390/ijerph17176079
Phirom K, Kamnardsiri T, Sungkarat S. Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults. International Journal of Environmental Research and Public Health. 2020; 17(17):6079. https://doi.org/10.3390/ijerph17176079
Chicago/Turabian StylePhirom, Kochaphan, Teerawat Kamnardsiri, and Somporn Sungkarat. 2020. "Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults" International Journal of Environmental Research and Public Health 17, no. 17: 6079. https://doi.org/10.3390/ijerph17176079
APA StylePhirom, K., Kamnardsiri, T., & Sungkarat, S. (2020). Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults. International Journal of Environmental Research and Public Health, 17(17), 6079. https://doi.org/10.3390/ijerph17176079