Can Air-Conditioning Systems Contribute to the Spread of SARS/MERS/COVID-19 Infection? Insights from a Rapid Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Euro. Surveill. 2020, 13, 2000280. [Google Scholar] [CrossRef]
- Nussbaumer-Streit, B.; Mayr, V.; Dobrescu, A.I.; Chapman, A.; Persad, E.; Klerings, I.; Wagner, G.; Siebert, U.; Christof, C.; Zachariah, C.; et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020, 4, 32267544. [Google Scholar] [CrossRef]
- Smith, G.D.; Spiegelhalter, D. Shielding from COVID-19 should be stratified by risk. BMJ 2020, 369, m2063. [Google Scholar] [CrossRef]
- L’Angiocola, P.D.; Monti, M. COVID-19: The critical balance between appropriate governmental restrictions and expected economic, psychological and social consequences in Italy. Are we going in the right direction? Acta Biomed. 2020, 91, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Von der Leiden, U.; Michel, C. Joint European Roadmap towards Lifting COVID-19 Containment. Available online: https://ec.europa.eu/info/sites/info/files/communication_-_a_european_roadmap_to_lifting_coronavirus_containment_measures_0.pdf (accessed on 19 July 2020).
- Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA. 2020, 323, 1837–1838. [Google Scholar] [CrossRef] [PubMed]
- WHO. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations. 29 March 2020. Available online: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed on 19 July 2020).
- Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef][Green Version]
- Somsen, G.A.; van Rijn, C.; Kooij, S.; Bem, R.A.; Bonn, D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir. Med. 2020, 8, 658–659. [Google Scholar] [CrossRef]
- Bourouiba, L.; Dehandschoewercker, E.; Bush, J. Violent expiratory events: On coughing and sneezing. J. Fluid Mech. 2014, 745, 537–563. [Google Scholar] [CrossRef]
- Wong, G.; Liu, W.; Liu, Y.; Zhou, B.; Bi, Y.; Gao, G.F. MERS, SARS, and Ebola: The role of super-spreaders in infectious disease. Cell Host Microbe. 2015, 18, 398–401. [Google Scholar] [CrossRef][Green Version]
- Chun, B.C. Understanding and modeling the super-spreading events of the Middle East respiratory syndrome outbreak in Korea. Infect. Chemother. 2016, 48, 147–149. [Google Scholar] [CrossRef][Green Version]
- Oraby, T.; Tyshenko, M.G.; Balkhy, H.H.; Tasnif, Y.; Quiroz-Gaspar, A.; Mohamed, Z.; Elsaadany, S.; Al-Mazroa, E.; Alhelail, M.A.; Arabi, Y.M.; et al. Analysis of the healthcare MERS-CoV outbreak in King Abdulaziz Medical Center, Riyadh, Saudi Arabia, June–August 2015 using a SEIR ward transmission model. Int. J. Environ. Res. Public Health. 2020, 17, 2936. [Google Scholar] [CrossRef] [PubMed]
- WHO. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions: Scientific Brief, 9 July 2020. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 19 July 2020).
- Mick, P.; Murphy, R. Aerosol-generating otolaryngology procedures and the need for enhanced PPE during the COVID-19 pandemic: A literature review. J. Otolaryngol. Head Neck Surg. 2020, 49, 29. [Google Scholar] [CrossRef]
- Checchi, V.; Bellini, P.; Bencivenni, D.; Consolo, U. COVID-19 dentistry-related aspects: A literature overview. Int. Dent. J. 2020. [Google Scholar] [CrossRef]
- Steward, J.E.; Kitley, W.R.; Schmidt, C.M.; Sundaram, C.P. Urologic surgery and COVID-19: How the pandemic is changing the way we operate. J. Endourol. 2020, 34, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, M.T.; Hart, A.; Henckel, J.; Sadoghi, P.; Seil, R.; Mouton, C. COVID-19 coronavirus: Recommended personal protective equipment for the orthopaedic and trauma surgeon. Knee Surg. Sports Traumatol Arthrosc. 2020, 28, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Odejinmi, F.; Clark, T. Covid 19 pandemic and gynaecological laparoscopic surgery: Knowns and unknowns. Facts Views Vis. Obgyn. 2020, 12, 3–7. [Google Scholar] [PubMed]
- Wujtewicz, M.; Dylczyk-Sommer, A.; Aszkiełowicz, A.; Zdanowski, S.; Piwowarczyk, S.; Owczuk, R. COVID-19—What should anaethesiologists and intensivists know about it? Anaesthesiol. Intensive Ther. 2020, 52, 34–41. [Google Scholar] [CrossRef] [PubMed]
- WHO. Advice on the Use of Masks in the Context of COVID-19: Interim Guidance, 5 June 2020. Available online: https://www.who.int/publications/i/item/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak (accessed on 7 August 2020).
- Magnavita, N.; Sacco, A.; Nucera, G.; Chirico, F. First aid during the Covid-19 pandemic. (Editorial). Occup. Med. (Lond.) 2020. Online ahead of print.. [Google Scholar] [CrossRef]
- Ciencewicki, J.; Jaspers, I. Air pollution and respiratory viral infection. Inhal. Toxicol. 2007, 19, 1135–1146. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Meng, X.; Wang, W. Spatial correlation of particulate matter pollution and death rate of COVID-19. medRxiv. 2020. [Google Scholar] [CrossRef][Green Version]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- WHO. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations: Scientific Brief. Available online: https://apps.who.int/iris/bitstream/handle/10665/331601/WHO-2019-nCoV-Sci_Brief-Transmission_modes-2020.1-eng.pdf (accessed on 27 March 2020).
- ASHRAE Board of Directors. ASHRAE Position Document on Infectious Aerosols. Available online: https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf (accessed on 19 July 2020).
- Istituto Superiore di Sanità (ISS). Rapporto ISS COVID-19 n. 33/2020—Indicazioni Sugli Impianti di Ventilazione/Climatizzazione in Strutture Comunitarie non Sanitarie e in Ambienti Domestici in Relazione alla Diffusione del Virus SARS-CoV-2. Versione del 25 Maggio 2020. In Italian. Available online: https://www.iss.it/rapporti-covid-19/-/asset_publisher/btw1J82wtYzH/content/rapporto-iss-covid-19-n.-33-2020-indicazioni-sugli-impianti-di-ventilazione-climatizzazione-in-strutture-comunitarie-non-sanitarie-e-in-ambienti-domestici-in-relazione-alla-diffusione-del-virus-sars-cov-2.-versione-del-25-maggio-2020 (accessed on 19 July 2020).
- Yang, B.; Melikov, A.K.; Kabanshi, A.; Zhang, C.; Bauman, F.S.; Cao, G.; Awbi, H.; Wigö, H.; Niu, J.; Cheong, K.W.D.; et al. A review of advanced air distribution methods—Theory, practice, limitations and solutions. Energy Build. 2019, 202, 109359. [Google Scholar] [CrossRef][Green Version]
- National Collaborating Centre for Methods and Tools. Rapid Review Guidebook Steps for Conducting a Rapid Review. Available online: https://www.nccmt.ca/uploads/media/media/0001/01/a816af720e4d587e13da6bb307df8c907a5dff9a.pdf (accessed on 19 July 2020).
- Tricco, A.C.; Antony, J.; Zarin, W.; Strifler, L.; Ghassemi, M.; Ivory, J.; Perrier, L.; Hutton, B.; Moher, D.; Straus, S.E. A scoping review of rapid review methods. BMC Med. 2015, 13, 224. [Google Scholar] [CrossRef][Green Version]
- Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.B.; To, K.F.; et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1986–1994. [Google Scholar] [CrossRef]
- Wong, T.W.; Lee, C.K.; Tam, W.; Lau, J.T.; Yu, T.S.; Lui, S.F.; Chan, P.K.; Li, Y.; Bresee, J.S.; Sung, J.J.; et al. Outbreak study group. cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg. Infect. Dis. 2004, 10, 269–276. [Google Scholar] [CrossRef]
- Yu, I.T.S.; Wong, T.W.; Chiu, Y.L.; Lee, N.; Li, Y. Temporal-spatial analysis of SARS among hospital inpatients. Clin. Infect. Dis. 2005, 40, 1237–1243. [Google Scholar] [CrossRef][Green Version]
- Chen, C.; Zhao, B.; Yang, X.; Li, Y. Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: Revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong. J. R. Soc. Interface 2011, 8, 699–710. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Huang, X.; Yu, I.T.; Wong, T.W.; Qian, H. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air 2005, 15, 83–95. [Google Scholar] [CrossRef]
- Yu, I.T.; Li, Y.; Wong, T.W.; Tam, W.; Chan, A.T.; Lee, J.H.W.; Leung, D.Y.C.; Ho, T. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 2004, 350, 1731–1739. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Duan, S.; Yu, I.T.; Wong, T.W. Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens. Indoor Air 2005, 15, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Chang, S.Y.; Sung, M.; Park, J.H.; Bin Kim, H.; Lee, H.; Choi, J.-P.; Choi, W.S.; Min, J.-Y. Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards. Clin. Infect. Dis. 2016, 63, 363–369. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Qian, H.; Miao, T.; Liu, L.; Zheng, X.; Luo, D.; Li, Y. Indoor transmission of SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, S.; Diao, M.Y.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 2020, 93, 201–204. [Google Scholar] [CrossRef]
- Xu, P.; Qian, H.; Miao, T.; Yen, H.L.; Tan, H.; Kang, M.; Cowling, B.J.; Li, Y. Transmission routes of Covid-19 virus in the Diamond Princess Cruise ship. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Mizumoto, K.; Chowell, G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infect. Dis. Model. 2020, 5, 264–270. [Google Scholar] [CrossRef]
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628–1631. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Hang, J.; Chen, X.; Hong, L.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; et al. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Guo, Z.D.; Wang, Z.Y.; Zhang, S.F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1583–1591. [Google Scholar] [CrossRef]
- Chowell, G.; Abdirizak, F.; Lee, S.; Lee, J.; Jung, E.; Nishiura, H.; Viboud, C. Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study. BMC Med. 2015, 13, 210. [Google Scholar] [CrossRef][Green Version]
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef]
- Hamner, L.; Dubbel, P.; Capron, I.; Ross, A.; Jordan, A.; Lee, J.; Lynn, J.; Ball, A.; Narwal, S.; Russell, S.; et al. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 606–610. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.M.; Yi, S.; Lee, S.; Na, B.J.; Kim, C.B.; Kim, J.i.; Kim, H.S.; Kim, Y.B.; Park, Y.; et al. Coronavirus disease outbreak in call center, South Korea. Emerg. Infect. Dis. 2020, 26, 1666–1670. [Google Scholar] [CrossRef]
- Jang, S.; Han, S.H.; Rhee, J.Y. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg. Infect. Dis. 2020, 26, 1917–1920. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Fears, A.C.; Klimstra, W.B.; Duprex, P.; Hartman, A.; Weaver, S.C.; Plante, K.S.; Mirchandani, D.; Plante, J.A.; Aguilar, P.V.; Fernandez, D.; et al. Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef][Green Version]
- Walker, C.M.; Gwangpyo, K.O. Effect of ultraviolet germicidal Irradiation on viral aerosols. Environ. Sci. Technol. 2007, 41, 5460–5465. [Google Scholar] [CrossRef]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef][Green Version]
- Chan, K.H.; Peiris, J.S.; Lam, S.Y.; Poon, L.L.; Yuen, K.Y.; Seto, W.H. The Effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol. 2011, 2011, 734690. [Google Scholar] [CrossRef]
- Chadwick, P.R.; Walker, M.; Rees, A.E. Airborne transmission of a small round structured virus. Lancet 1994, 343, 171. [Google Scholar] [CrossRef]
- Josephson, A.; Gombert, M.E. Airborne transmission of nosocomial varicella from localized zoster. J. Infect. Dis. 1988, 158, 238–241. [Google Scholar] [CrossRef]
- Qian, H.; Zheng, X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 2018, 10, S2295–S2304. [Google Scholar] [CrossRef]
- Correia, G.; Rodrigues, L.; Gameiro da Silva, M.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses 2020, 141, 109781. [Google Scholar] [CrossRef]
- Rahmani, A.R.; Leili, M.; Azarian, G.; Poormohammadi, A. Sampling and detection of corona viruses in air: A mini review. Sci. Total Environ. 2020, 740, 140207. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of COVID-19: Why 2 m/6 feet of inter-personal distance could not be enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef][Green Version]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C.; et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Resp. Med. 2020. [Google Scholar] [CrossRef]
- Chirico, F.; Rulli, G. Strategy and methods for the risk assessment of thermal comfort in the workplace. G. Ital. Med. Lav. Ergon. 2015, 37, 220–233. [Google Scholar]
- Yang, W.; Marr, L.C. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol. 2012, 78, 6781–6788. [Google Scholar] [CrossRef][Green Version]
- National Academies of Sciences, Engineering, and medicine. Rapid Expert Consultation on SARS-CoV-2 Survival in Relation to Temperature and Humidity and Potential for Seasonality for the COVID-19 Pandemic (April 7, 2020). Available online: https://www.cebm.net/study/covid-19-sars-cov-2-survival-in-relation-to-temperature-and-humidity-and-potential-for-seasonality/ (accessed on 19 July 2020).
- Sportelli, M.C.; Izzi, M.; Kukushkina, E.A.; Hossain, S.I.; Picca, R.A.; Ditaranto, N.; Cioffi, N. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials 2020, 10, 802. [Google Scholar] [CrossRef][Green Version]
- Christian, M.D.; Loutfy, M.; McDonald, L.C.; Martinez, K.F.; Ofner, M.; Wong, T.; Wallington, T.; Gold, W.L.; Mederski, B.; Green, K.; et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg. Infect. Dis. 2004, 10, 287–293. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chirico, F.; Nucera, G.; Magnavita, N. Hospital infection and COVID-19: Do not put all your eggs on the “swab” tests. Infect. Control. Hosp. Epidemiol. 2020, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, K.V.; Serrano, A.; Hu, J.; Black, M.; Feng, X.; Shen, G.; Call, M.; Kim, M.J.; Lytle, A.; Belovarac, B.; et al. Association of initial viral load in SARS-CoV-2 patients with outcome and symptoms. Am. J. Clin. Pathol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
Authors and Year | Virus | Country | Type of Study | Type of Publication | Setting | Cases | Role of HVAC System |
---|---|---|---|---|---|---|---|
Lee et al., 2003 [33] | SARS-CoV-1 | Hong Kong (SAR), China | Observational | Peer review journal | Hospital | 156 | Not considered (aerosol in the index case originated the outbreak) |
Wong et al., 2004 [34] | SARS-CoV-1 | Hong Kong (SAR), China | Retrospective | Peer review journal | Hospital | 66 | Indirectly proven by epidemiological data and ventilation study |
Yu et al., 2005 [35] | SARS-CoV-1 | Hong Kong (SAR), China | Retrospective | Peer review journal | Hospital | 74 | Indirectly proven by spatiotemporal pattern of infection |
Chen et al., 2011 [36] | SARS-CoV-1 | Hong Kong (SAR), China | Experimental modelling | Peer review journal | Hospital | Not reported | Indirectly proven by an airflow-dynamics model |
Li, Huang et al., 2004 [37] | SARS-CoV-1 | Hong Kong (SAR), China | Observational with experimental modeling | Peer review journal | Hospital | 30 | Indirectly proven by the spatiotemporal pattern of infection and by experimental modeling |
Yu et al., 2004 [38] | SARS-CoV-1 | Hong Kong (SAR), China | Observational with experimental modelling | Peer review journal | Community | 187 | Indirectly proven by the spatial and temporal pattern of infection and by an airflow-dynamics model |
Li, Duan et al., 2005 [39] | SARS-CoV-1 | Hong Kong (SAR), China | Experimental modeling | Peer review journal | Community | 329 | Indirectly proven by a multizone airflow-dynamics model |
Kim et al., 2016 [40] | MERS | South Korea | Environmental sampling | Peer review journal | Hospitals | 3 | HVAC contamination was demonstrated |
Quian et al., 2020 [41] | SARS-CoV-2 | China | Observational | Pre-print | Community and workplace | 1245 | Suspected |
Zhang et al., 2020 [42] | SARS-CoV-2 | Japan | Observational | Peer review journal | Ship | 355 | Suspected |
Xu et al., 2020 [43] | SARS-CoV-2 | Japan | Observational | Pre-print | Ship | 355 | Not supported by the spatiotemporal distribution of cases |
Mizumoto and Chowel, 2020 [44] | SARS-CoV-2 | Japan | Observational | Peer review journal | Ship | 355 | Not supported by the spatiotemporal distribution of cases |
Lu et al., 2020 [45] | SARS-CoV-2 | China | Observational | Peer review journal | Restaurant | 10 | Suspected |
Li, Qian, Hang, 2020 [46] | SARS-CoV-2 | China | Observational with experimental modeling | Pre-print | Restaurant | 10 | Supported by computer simulation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirico, F.; Sacco, A.; Bragazzi, N.L.; Magnavita, N. Can Air-Conditioning Systems Contribute to the Spread of SARS/MERS/COVID-19 Infection? Insights from a Rapid Review of the Literature. Int. J. Environ. Res. Public Health 2020, 17, 6052. https://doi.org/10.3390/ijerph17176052
Chirico F, Sacco A, Bragazzi NL, Magnavita N. Can Air-Conditioning Systems Contribute to the Spread of SARS/MERS/COVID-19 Infection? Insights from a Rapid Review of the Literature. International Journal of Environmental Research and Public Health. 2020; 17(17):6052. https://doi.org/10.3390/ijerph17176052
Chicago/Turabian StyleChirico, Francesco, Angelo Sacco, Nicola Luigi Bragazzi, and Nicola Magnavita. 2020. "Can Air-Conditioning Systems Contribute to the Spread of SARS/MERS/COVID-19 Infection? Insights from a Rapid Review of the Literature" International Journal of Environmental Research and Public Health 17, no. 17: 6052. https://doi.org/10.3390/ijerph17176052