Profiles on the Orientation Discrimination Processing of Human Faces
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Materials
2.3. Procedure
2.4. Design and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kortli, Y.; Jridi, M.; Al Falou, A.; Atri, M. Face Recognition Systems: A Survey. Sensors 2020, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Smart, N.R.; Horwell, C.J.; Smart, T.S.; Galea, K.S. Assessment of the Wearability of Facemasks against Air Pollution in Primary School-Aged Children in London. Int. J. Environ. Res. Public Health 2020, 17, 3935. [Google Scholar] [CrossRef] [PubMed]
- Almabdy, S.; Elrefaei, L. Deep Convolutional Neural Network-Based Approaches for Face Recognition. Appl. Sci. 2019, 9, 4397. [Google Scholar] [CrossRef]
- Biederman, I.; Shilowich, B.E.; Herald, S.B.; Margalit, E.; Maarek, R.; Meschke, E.X.; Hacker, C.M. The cognitive neuroscience of person identification. Neuropsychologia 2018, 116, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Hupp, S.; Jewell, J. The Encyclopedia of Child and Adolescent Development, 1st ed.; Hupp, S., Jewell, J., Eds.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-16189-9. [Google Scholar]
- Morton, J.; Johnson, M.H. CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychol. Rev. 1991, 98, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Haxby, J.V.; Hoffman, E.A.; Gobbini, M.I. Human neural systems for face recognition and social communication. Biol. Psychiatry 2002, 51, 59–67. [Google Scholar] [CrossRef]
- Kanwisher, N.; McDermott, J.; Chun, M.M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J. Neurosci. 1997, 17, 4302–4311. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef]
- Rossion, B.; Hanseeuw, B.; Dricot, L. Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis. Brain Cogn. 2012, 79, 138–157. [Google Scholar] [CrossRef]
- Mei, L.; Xue, G.; Chen, C.; Xue, F.; Zhang, M.; Dong, Q. The “visual word form area” is involved in successful memory encoding of both words and faces. NeuroImage 2010, 52, 371–378. [Google Scholar] [CrossRef]
- Centanni, T.M.; Norton, E.S.; Park, A.; Beach, S.D.; Halverson, K.; Ozernov-Palchik, O.; Gaab, N.; Gabrieli, J.D. Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev. Sci. 2018, 21, e12658. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, A.J.; Roark, D.A.; Abdi, H. Recognizing moving faces: A psychological and neural synthesis. Trends Cogn. Sci. 2002, 6, 261–266. [Google Scholar] [CrossRef]
- Haxby, J.V.; Hoffman, E.A.; Gobbini, M.I. The distributed human neural system for face perception. Trends Cogn. Sci. 2000, 4, 223–233. [Google Scholar] [CrossRef]
- Aglinskas, A.; Fairhall, S.L. Regional Specialization and Coordination Within the Network for Perceiving and Knowing About Others. Cereb. Cortex 2019, 30, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Ramon, M.; Gobbini, M.I. Familiarity matters: A review on prioritized processing of personally familiar faces. Vis. Cogn. 2018, 26, 179–195. [Google Scholar] [CrossRef]
- Andrews, T.J.; Davies-Thompson, J.; Kingstone, A.; Young, A.W. Internal and External Features of the Face Are Represented Holistically in Face-Selective Regions of Visual Cortex. J. Neurosci. 2010, 30, 3544–3552. [Google Scholar] [CrossRef]
- Pascalis, O.; Slater, A. The Development of Face Processing in Infancy and Early Childhood: Current Perspectives; Pascalis, O., Slater, A., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2003; ISBN 978-1-59033-775-2. [Google Scholar]
- Norton, D.; McBain, R.; Chen, Y. Reduced Ability to Detect Facial Configuration in Middle-Aged and Elderly Individuals: Associations With Spatiotemporal Visual Processing. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2009, 64, 328–334. [Google Scholar] [CrossRef]
- Megreya, A.M.; Bindemann, M. Developmental Improvement and Age-Related Decline in Unfamiliar Face Matching. Perception 2015, 44, 5–22. [Google Scholar] [CrossRef]
- Sunday, M.A.; Dodd, M.D.; Tomarken, A.J.; Gauthier, I. How faces (and cars) may become special. Vis. Res. 2019, 157, 202–212. [Google Scholar] [CrossRef]
- Sunday, M.A.; Patel, P.A.; Dodd, M.D.; Gauthier, I. Gender and hometown population density interact to predict face recognition ability. Vis. Res. 2019, 163, 14–23. [Google Scholar] [CrossRef]
- Sigurdardottir, H.M.; Hjartarson, K.H.; Gudmundsson, G.L.; Kristjánsson, Á. Own-race and other-race face recognition problems without visual expertise problems in dyslexic readers. Vis. Res. 2019, 158, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Moret-Tatay, C.; Murphy, M. Editorial: Aging in the Digital Era. Front. Psychol. 2019, 10, 1815. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, O.L.; Komleva, Y.K.; Gorina, Y.V.; Higashida, H.; Salmina, A.B. Neurobiological Aspects of Face Recognition: The Role of Oxytocin. Front. Behav. Neurosci. 2018, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Moret-Tatay, C.; Baixauli-Fortea, I.; Sevilla, M.D.G.; Irigaray, T.Q. Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics 2020, 8, 699. [Google Scholar] [CrossRef]
- Devue, C.; Wride, A.; Grimshaw, G.M. New insights on real-world human face recognition. J. Exp. Psychol. Gen. 2019, 148, 994–1007. [Google Scholar] [CrossRef]
- Chu, Y.; Ahmad, T.; Bebis, G.; Zhao, L. Low-resolution face recognition with single sample per person. Signal Process. 2017, 141, 144–157. [Google Scholar] [CrossRef]
- Lee, K.-C.; Ho, J.; Kriegman, D.J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 684–698. [Google Scholar] [CrossRef]
- Perlibakas, V. Distance measures for PCA-based face recognition. Pattern Recognit. Lett. 2004, 25, 711–724. [Google Scholar] [CrossRef]
- Rinaldi, L.; Di Luca, S.; Henik, A.; Girelli, L. Reading direction shifts visuospatial attention: An Interactive Account of attentional biases. Acta Psychol. 2014, 151, 98–105. [Google Scholar] [CrossRef]
- Kazandjian, S.; Cavézian, C.; Zivotofsky, A.Z.; Chokron, S. Bisections in two languages: When number processing, spatial representation, and habitual reading direction interact. Neuropsychologia 2010, 48, 4031–4037. [Google Scholar] [CrossRef]
- Chokron, S.; Imbert, M. Influence of reading habits on line bisection. Cogn. Brain Res. 1993, 1, 219–222. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.G.; Lundqvist, D. Facial expressions of emotion (KDEF): Identification under different display-duration conditions. Behav. Res. Methods 2008, 40, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Forster, K.I.; Forster, J.C. DMDX: A Windows display program with millisecond accuracy. Behav. Res. Methods Instrum. Comput. 2003, 35, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Balakrishnan, R.; Ramakrishnan, B.S. Ontology With Hybrid Clustering Approach for Improving the Retrieval Relevancy in Social Event Detection. Int. J. Semant. Web Inf. Syst. 2018, 14, 33–56. [Google Scholar] [CrossRef]
- Van Hoey, J.; Moret-Tatay, C.; Santolaya Prego de Oliver, J.A.; Beneyto-Arrojo, M.J. Profile Changes in Male Partner Abuser After an Intervention Program in Gender-Based Violence. Int. J. Offender Ther. Comp. Criminol. 2019, 0306624X19884170. [Google Scholar] [CrossRef]
- Zhen, Z.; Fang, H.; Liu, J. The Hierarchical Brain Network for Face Recognition. PLoS ONE 2013, 8, e59886. [Google Scholar] [CrossRef]
- Henry, D.B.; Tolan, P.H.; Gorman-Smith, D. Cluster Analysis in Family Psychology Research. J. Fam. Psychol. 2005, 19, 121–132. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Lemus-Zúñiga, L.-G.; Tortosa, D.A.; Gamermann, D.; Vázquez-martínez, A.; Navarro-Pardo, E.; Conejero, J.A. Age slowing down in detection and visual discrimination under varying presentation times. Scand. J. Psychol. 2017, 58, 304–311. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Lami, A.; Oliveira, C.R.; Beneyto-Arrojo, M.J. The mediational role of distracting stimuli in emotional word recognition. Psicol. Reflex. E Crítica 2018, 31, 1. [Google Scholar] [CrossRef]
- Sellke, T.; Bayarri, M.J.; Berger, J.O. Calibration of ρ Values for Testing Precise Null Hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
- Nuzzo, R. Scientific method: Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Cureton, E.E. Rank-biserial correlation. Psychometrika 1956, 21, 287–290. [Google Scholar] [CrossRef]
- Glezer, L.S.; Eden, G.; Jiang, X.; Luetje, M.; Napoliello, E.; Kim, J.; Riesenhuber, M. Uncovering phonological and orthographic selectivity across the reading network using fMRI-RA. NeuroImage 2016, 138, 248–256. [Google Scholar] [CrossRef]
- Ventura, P. Let’s face it: Reading acquisition, face and word processing. Front. Psychol. 2014, 5, 787. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Goffaux, V.; Greenwood, J.A. The orientation selectivity of face identification. Sci. Rep. 2016, 6, 34204. [Google Scholar] [CrossRef]
- Goffaux, V.; Rossion, B. Faces are “spatial”--holistic face perception is supported by low spatial frequencies. J. Exp. Psychol. Hum. Percept. Perform. 2006, 32, 1023–1039. [Google Scholar] [CrossRef]
- Burns, E.J.; Bennetts, R.J.; Bate, S.; Wright, V.C.; Weidemann, C.T.; Tree, J.J. Intact word processing in developmental prosopagnosia. Sci. Rep. 2017, 7, 1683. [Google Scholar] [CrossRef] [PubMed]
- Corrow, S.L.; Stubbs, J.L.; Schlaug, G.; Buss, S.; Paquette, S.; Duchaine, B.; Barton, J.J.S. Perception of musical pitch in developmental prosopagnosia. Neuropsychologia 2019, 124, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Grbavec, A.; Fox, C.; Barton, J. Use of a correlative training method in the rehabilitation of acquired prosopagnosia. J. Vis. 2010, 9, 487. [Google Scholar] [CrossRef]
Target | Distractor | Δ | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Accuracy | Mean | SD | Accuracy | Mean | SD | |
Central | 916.95 | 212.99 | 73 | 947.76 | 196.02 | 80 | 30.81 | 150.29 |
Partial right | 891.12 | 164.97 | 78 | 964.48 | 222.65 | 77 | 73.37 | 154.19 |
Right Profile | 889.37 | 160.33 | 75 | 974.39 | 225.47 | 75 | 85.02 | 148.27 |
Partial Left | 880.43 | 159.18 | 75 | 953.07 | 209.97 | 82 | 72.64 | 164.29 |
Left profile | 865.87 | 177.62 | 71 | 989.00 | 224.21 | 79 | 123.13 | 173.13 |
Number | BIC | Δ BIC | Δ BIC Ratio | Distance Ratio |
---|---|---|---|---|
1 | 120.166 | |||
2 | 111.049 | −9.117 | 1.000 | 1.976 |
3 | 122.533 | 11.484 | −1.260 | 4.279 |
4 | 150.185 | 27.651 | −3.033 | 1.116 |
5 | 178.349 | 28.164 | −3.089 | 1.571 |
6 | 208.118 | 29.770 | −3.265 | 1.234 |
7 | 238.421 | 30.303 | −3.324 | 1.174 |
8 | 269.062 | 30.640 | −3.361 | 1.860 |
9 | 300.599 | 31.537 | −3.459 | 1.031 |
10 | 332.168 | 31.569 | −3.463 | 1.234 |
11 | 363.929 | 31.761 | −3.484 | 1.015 |
12 | 395.702 | 31.773 | −3.485 | 1.136 |
13 | 427.572 | 31.870 | −3.496 | 1.070 |
14 | 459.488 | 31.916 | −3.501 | 1.016 |
15 | 491.415 | 31.927 | −3.502 | 1.066 |
Target | Distractor | Δ | |||||||
Group | Position | Mean | SD | Accuracy | Mean | SD | Accuracy | Mean | SD |
G1 n = 14 | Central | 1041.65 | 199.82 | 74 | 1065.77 | 180.95 | 71 | 24.12 | 177.35 |
Partial right | 963.89 | 156.61 | 77 | 1128.42 | 150.15 | 74 | 164.53 | 113.43 | |
Right Profile | 964.09 | 159.41 | 74 | 1128.62 | 157.13 | 69 | 164.53 | 124.86 | |
Partial Left | 944.57 | 151.65 | 74 | 1091.98 | 176.81 | 78 | 147.41 | 139.73 | |
Left profile | 954.26 | 175.91 | 69 | 1151.47 | 163.41 | 74 | 197.21 | 184.43 | |
G2 n = 12 | Central | 771.47 | 114.17 | 71 | 810.08 | 101.11 | 89 | 38.62 | 118.49 |
Partial right | 806.21 | 135.13 | 80 | 773.22 | 109.12 | 81 | −33.00 | 126.12 | |
Right Profile | 802.21 | 113.99 | 75 | 794.46 | 144.12 | 82 | −7.74 | 118.77 | |
Partial Left | 805.60 | 138.06 | 76 | 791.02 | 100.23 | 88 | −14.58 | 151.19 | |
Left profile | 762.75 | 116.57 | 72 | 799.45 | 99.52 | 86 | 36.71 | 113.10 |
95% IC Hodges-Lehmann | ||||||||
---|---|---|---|---|---|---|---|---|
Position | W | p | VS-MPR * | Hodges-Lehmann | Inferior | Superior | Rank-Biserial Correlation | |
Target | Central | 153.0 | <0.001 | 296.13 | 235.59 | 133.007 | 406.296 | 0.821 |
Partial right | 132.0 | 0.013 | 6.64 | 150.83 | 39.058 | 285.781 | 0.571 | |
Right Profile | 134.0 | 0.009 | 8.59 | 137.71 | 42.708 | 245.354 | 0.595 | |
Partial Left | 125.0 | 0.036 | 3.09 | 126.63 | 7.592 | 248.429 | 0.488 | |
Left profile | 144.0 | 0.001 | 41.69 | 155.48 | 78.479 | 278.485 | 0.714 | |
Distractor | Central | 157.0 | <0.001 | 900.44 | 228.16 | 131.955 | 376.916 | 0.869 |
Partial right | 168.0 | <0.001 | 115,426.96 | 340.01 | 225.884 | 463.676 | 1.000 | |
Right Profile | 162.0 | <0.001 | 4939.10 | 324.96 | 204.327 | 444.413 | 0.929 | |
Partial Left | 168.0 | <0.001 | 115,426.96 | 269.16 | 151.331 | 413.728 | 1.000 | |
Left profile | 163.0 | <0.001 | 7512.37 | 349.44 | 232.391 | 485.385 | 0.940 |
95% IC Hodges-Lehmann | |||||||
---|---|---|---|---|---|---|---|
Position | W | p | VS-MPR | Hodges-Lehmann | Inferior | Superior | Rank-Biserial Correlation |
Central | 83.00 | 0.980 | 1.000 | −2.095 | −132.04 | 119.8 | −0.012 |
Partial right | 146.00 | <0.001 | 61.221 | 208.146 | 105.96 | 286.3 | 0.738 |
Right profile | 139.00 | 0.004 | 17.727 | 169.989 | 71.61 | 277.1 | 0.655 |
Partial Left | 142.00 | 0.002 | 29.110 | 134.609 | 65.32 | 235.7 | 0.690 |
Left profile | 131.00 | 0.015 | 5.886 | 147.011 | 50.28 | 304.4 | 0.560 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moret-Tatay, C.; Baixauli-Fortea, I.; Grau-Sevilla, M.D. Profiles on the Orientation Discrimination Processing of Human Faces. Int. J. Environ. Res. Public Health 2020, 17, 5772. https://doi.org/10.3390/ijerph17165772
Moret-Tatay C, Baixauli-Fortea I, Grau-Sevilla MD. Profiles on the Orientation Discrimination Processing of Human Faces. International Journal of Environmental Research and Public Health. 2020; 17(16):5772. https://doi.org/10.3390/ijerph17165772
Chicago/Turabian StyleMoret-Tatay, Carmen, Inmaculada Baixauli-Fortea, and M. Dolores Grau-Sevilla. 2020. "Profiles on the Orientation Discrimination Processing of Human Faces" International Journal of Environmental Research and Public Health 17, no. 16: 5772. https://doi.org/10.3390/ijerph17165772
APA StyleMoret-Tatay, C., Baixauli-Fortea, I., & Grau-Sevilla, M. D. (2020). Profiles on the Orientation Discrimination Processing of Human Faces. International Journal of Environmental Research and Public Health, 17(16), 5772. https://doi.org/10.3390/ijerph17165772