Effects of Covid-19 Lockdown on Mental Health and Sleep Disturbances in Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Cohen Silver, R.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.R.; Agho, K.E.; Stevens, G.J.; Raphael, B. Factors influencing psychological distress during a disease epidemic: Data from Australia’s first outbreak of equine influenza. BMC Public Health 2008, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Hawryluck, L.; Gold, W.L.; Robinson, S.; Pogorski, S.; Galea, S.; Styra, R. SARS control and psychological effects of quarantine, Toronto, Canada. Emerg. Infect. Dis. 2004, 10, 1206–1212. [Google Scholar] [CrossRef]
- Altena, E.; Baglioni, C.; Espie, C.A.; Ellis, J.; Gavriloff, D.; Holzinger, B.; Schlarb, A.; Frase, L.; Jernelöv, S.; Riemann, D. Dealing with sleep problems during home confinement due to the COVID-19 outbreak: Practical recommendations from a task force of the European CBT-I Academy. J. Sleep Res. 2020, e13052. [Google Scholar] [CrossRef]
- Ahmed, M.Z.; Ahmed, O.; Aibao, Z.; Hanbin, S.; Siyu, L.; Ahmad, A. Epidemic of COVID-19 in China and associated Psychological Problems. Asian J. Psychiatry 2020, 51, 102092. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef]
- Lei, L.; Huang, X.; Zhang, S.; Yang, J.; Yang, L.; Xu, M. Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in Southwestern China. Med. Sci. Monit. 2020, 26, e924609. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, L.; Liu, S.; Ma, S.; Wang, Y.; Cai, Z.; Du, H.; Li, R.; Kang, L.; Su, M.; et al. Survey of insomnia and related social psychological factors among medical staff involved in the 2019 novel coronavirus disease outbreak. Front. Psychiatry 2020, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Liao, Z.; Huang, H.; Jiang, B.; Zhang, X.; Wang, Y.; Zhao, M. Comparison of the indicators of psychological stress in the population of Hubei Province and non-endemic provinces in China during two weeks during the coronavirus disease 2019 (COVID-19) outbreak in February 2020. Med. Sci. Monit. 2020, 26, e923767. [Google Scholar] [CrossRef]
- Government of Italy Decree of the President of the Council of Ministers 9 March 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg (accessed on 30 May 2020).
- Government of Italy Decree-Law Number 6 23 February 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/02/23/20G00020/sg (accessed on 30 May 2020).
- Government of Italy Decree of the President of the Council of Ministers 25 February 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/02/25/20A01278/sg%09 (accessed on 30 May 2020).
- Government of Italy Decree of the President of the Council of Ministers 11 March 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/11/20A01605/sg%09 (accessed on 30 May 2020).
- Government of Italy Decree of the President of the Council of Ministers 10 April 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/04/11/20A02179/sg (accessed on 30 May 2020).
- Dipartimento Della Protezione Civile COVID-19 Italia—Monitoraggio Della Situazione. Available online: http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1 (accessed on 30 May 2020).
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The patient health questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Monahan, P.O.; Löwe, B. Anxiety disorders in primary care: Prevalence, impairment, comorbidity, and detection. Ann. Intern. Med. 2007, 146, 317–325. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- ISTAT Istituto Nazionale di Statistica. La Salute Mentale Nelle Varie Fasi Della Vita. Anni 2015–2017; AT Istituto Nazionale di Statistica: Rome, Italy, 2018.
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 2020, e13074. [Google Scholar] [CrossRef]
- Mazza, C.; Ricci, E.; Biondi, S.; Colasanti, M.; Ferracuti, S.; Napoli, C.; Roma, P. A nationwide survey of psychological distress among Italian people during the COVID-19 pandemic: Immediate psychological responses and associated factors. Int. J. Environ. Res. Public Health 2020, 17, 3165. [Google Scholar] [CrossRef] [PubMed]
- González-Sanguino, C.; Ausín, B.; Castellanos, M.Á.; Saiz, J.; López-Gómez, A.; Ugidos, C.; Muñoz, M. Mental health consequences during the initial stage of the 2020 Coronavirus pandemic (COVID-19) in Spain. Brain Behav. Immun. 2020. [Google Scholar] [CrossRef]
- Ozamiz-Etxebarria, N.; Dosil-Santamaria, M.; Picaza-Gorrochategui, M.; Idoiaga-Mondragon, N. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad. Saude Publica 2020, 36, e00054020. [Google Scholar] [CrossRef]
- Bert, F.; Lo Moro, G.; Corradi, A.; Acampora, A.; Agodi, A.; Brunelli, L.; Chironna, M.; Cocchio, S.; Cofini, V.; D’Errico, M.M.; et al. Prevalence of depressive symptoms among Italian medical students: The multicentre cross-sectional “PRIMES” study. PLoS ONE 2020, 15, e0231845. [Google Scholar] [CrossRef]
- Sharp, J.; Theiler, S. A review of psychological distress among university students: Pervasiveness, implications and potential points of intervention. Int. J. Adv. Couns. 2018, 40, 193–212. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef]
- Bert, F.; Gualano, M.R.; Thomas, R.; Vergnano, G.; Voglino, G.; Siliquini, R. Exploring the possible health consequences of job insecurity: A pilot study among young workers. Gac. Sanit. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Jun, H.; Liang, B. Psychological health diathesis assessment system: A nationwide survey of resilient trait scale for Chinese adults. Stud. Psychol. Behav. 2014, 12, 735–742. [Google Scholar]
- Ahmad, A.R.; Murad, H.R. The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: Online questionnaire study. J. Med. Internet Res. 2020, 22, e19556. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar] [CrossRef] [PubMed]
- Sell, T.K.; Boddie, C.; McGinty, E.E.; Pollack, K.; Smith, K.C.; Burke, T.A.; Rutkow, L. Media messages and perception of risk for Ebola virus infection, United States. Emerg. Infect. Dis. 2017, 23, 108–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garfin, D.R.; Silver, R.C.; Holman, E.A. The novel coronavirus (COVID-2019) outbreak: Amplification of public health consequences by media exposure. Health Psychol. 2020, 39, 355–357. [Google Scholar] [CrossRef]
- Smith, R.D. Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med. 2006, 63, 3113–3123. [Google Scholar] [CrossRef]
- Ng, E. The pandemic of hate is giving novel coronavirus disease (COVID-19) a helping hand. Am. J. Trop. Med. Hyg. 2020, 102, 1158–1159. [Google Scholar] [CrossRef] [Green Version]
- Tonkinson, P. How Did Runners Become Public Enemy Number One? The Telegraph. Available online: https://www.telegraph.co.uk/health-fitness/body/did-runners-become-public-enemy-number-one/ (accessed on 30 May 2020).
- Jónsdóttir, U.; Þórðardóttir, E.B.; Aspelund, T.; Jónmundsson, Þ.; Einarsdóttir, K. The effect of the 2008 recession on well-being and employment status of people with and without mental health problems. Eur. J. Public Health 2019. [Google Scholar] [CrossRef]
- ISTAT Istituto Nazionale di Statistica. Indicatori Demografici Anno 2019; ISTAT Istituto Nazionale di Statistica: Rome, Italy, 2020.
Variable | Category | N | % |
---|---|---|---|
Age † | 42 | 23 | |
Gender | Male | 511 | 34.4 |
Female | 973 | 65.6 | |
Geographical Area | North | 987 | 75.5 |
Centre | 179 | 13.7 | |
South | 141 | 10.8 | |
Marital Status | Single/Divorced | 577 | 38.9 |
Married/Cohabitant | 908 | 61.1 | |
Education Level | None | 1 | 0.1 |
Elementary School | 3 | 0.2 | |
Middle School | 72 | 4.8 | |
High School | 389 | 26 | |
University | 1029 | 68.9 | |
Employment | Unemployed | 94 | 6.2 |
Student | 108 | 7.1 | |
Employed (public sector) | 376 | 24.9 | |
Employed (private sector) | 446 | 29.5 | |
Self-employed | 208 | 13.7 | |
Entrepreneur | 37 | 2.4 | |
Retiree | 224 | 14.8 | |
Housewife | 20 | 1.3 | |
Fear of Losing Employment | No | 543 | 85.4 |
Yes | 93 | 14.6 | |
Income Reduction | No | 46 | 23.5 |
Yes | 150 | 76.5 | |
Activity During Lockdown | I do not work | 310 | 20.7 |
My activity is not changed | 230 | 15.3 | |
Smart working | 489 | 32.6 | |
Layoff | 98 | 6.5 | |
Parental Leave | 7 | 0.5 | |
Paid Vacation | 15 | 1 | |
My activity is reduced | 155 | 10.3 | |
My activity is stopped | 116 | 7.7 | |
I lost my job | 18 | 1.2 | |
Other | 63 | 4.2 | |
Healthcare Worker | No | 1186 | 79.6 |
Yes | 304 | 20.4 | |
Chronic Conditions | No | 1171 | 78.2 |
Yes | 326 | 21.8 | |
Domestic Animal | No | 944 | 62.9 |
Yes | 556 | 37.1 | |
Shopping Online | No | 619 | 41.6 |
Yes | 869 | 58.4 | |
Time Spent on Internet† | Hours/day | 9 | 6 |
Time Spent on Internet | Stable | 322 | 21.6 |
Increased | 1119 | 75.1 | |
Decreased | 22 | 1.5 | |
I do not know | 27 | 1.8 | |
Source of Information (TV) | No | 454 | 30 |
Yes | 1061 | 70 | |
Source of Information (Radio) | No | 1169 | 77.2 |
Yes | 346 | 22.8 | |
Source of Information (Internet) | No | 254 | 16.8 |
Yes | 1261 | 83.2 | |
Source of Information (Newspaper) | No | 715 | 47.2 |
Yes | 800 | 52.8 | |
Source of Information (Friends) | No | 1266 | 83.6 |
Yes | 249 | 16.4 | |
Times Went Out † | Number/Week | 3 | 6 |
Afraid to Leave Home | No | 1019 | 69.7 |
Yes | 444 | 30.3 | |
Do You Wear a Facemask Going Out? | No, I do not think is useful | 67 | 4.4 |
No, I was not able to find one | 26 | 1.7 | |
Yes, sometimes | 266 | 17.7 | |
Yes, always | 1071 | 71.1 | |
I do not go out | 76 | 5 | |
Avoidance of Activity (fear of injuries) | No | 1145 | 76.7 |
Yes | 348 | 23.3 | |
Yes | 388 | 26.1 | |
Avoidance of Health Services | No | 1299 | 86.9 |
Yes | 195 | 13.1 | |
Self-Medication | No | 1420 | 95 |
Yes | 74 | 5 |
Variable | Depression (PHQ-2) | Anxiety (GAD-2) | Sleep Disturbances | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No N (%) | Yes N (%) | p-Value | No N (%) | Yes N (%) | p-Value | No N (%) | Yes N (%) | p-Value | ||
Total | 1119 (75.3) | 367 (24.7) | 1144 (76.8) | 345 (23.2) | 854 (57.8) | 624 (42.2) | ||||
Age † | 43 (24) | 40 (23) | <0.001 * | 44 (26) | 37 (17) | <0.001 * | 44 (26) | 40 (21) | <0.001 * | |
Gender | Male | 389 (77.6) | 112 (22.4) | 0.132 | 420 (83.7) | 82 (16.3) | <0.001 * | 327 (65.5) | 172 (34.5) | <0.001 * |
Female | 708 (74.1) | 248 (25.9) | 700 (73.2) | 256 (26.8) | 509 (53.6) | 440 (46.4) | ||||
Geographical Area | North | 727 (74.7) | 246 (25.3) | 0.106 | 731 (74.8) | 246 (25.2) | 0.139 | 558 (57.2) | 418 (42.8) | 0.242 |
Centre | 140 (80.5) | 34 (19.5) | 142 (81.6) | 32 (18.4) | 107 (61.8) | 66 (38.2) | ||||
South | 94 (70.1) | 40 (29.9) | 99 (73.9) | 35 (26.1) | 69 (52.3) | 63 (47.7) | ||||
Marital Status | Single/Divorced | 396 (69.5) | 174 (30.5) | <0.001 * | 410 (71.8) | 161 (28.2) | <0.001 * | 313 (55.3) | 253 (44.7) | 0.164 |
Married/Cohabitant | 702 (79.1) | 185 (20.9) | 709 (79.8) | 180 (20.2) | 521 (59) | 362 (41) | ||||
Education Level | High school or lower | 335 (73.8) | 119 (26.2) | 0.289 | 365 (80) | 91 (20) | 0.046 * | 263 (58.1) | 190 (41.9) | 0.862 |
University | 772 (76.4) | 239 (23.6) | 762 (75.3) | 250 (24.7) | 578 (57.6) | 426 (42.4) | ||||
Activity During Lockdown | No variation | 403 (75.9) | 128 (24.1) | 0.114 | 418 (78.7) | 113 (21.3) | 0.197 | 330 (62.6) | 197 (37.4) | 0.001 * |
Smart working | 377 (78.5) | 103 (21.5) | 377 (78.1) | 106 (21.9) | 282 (58.6) | 199 (41.4) | ||||
Guaranteed income | 86 (72.9) | 32 (27.1) | 85 (72) | 33 (28) | 55 (47.4) | 61 (52.6) | ||||
Activity Stop/Reduction | 201 (71) | 82 (29) | 209 (73.6) | 75 (26.4) | 143 (50.9) | 138 (49.1) | ||||
Economical Struggle | Non worker | 317 (72.5) | 120 (27.5) | 0.033 * | 345 (78.9) | 92 (21.1) | 0.153 | 261 (60.3) | 172 (39.7) | 0.010 * |
Worker experiencing trouble | 175 (73.2) | 64 (26.8) | 173 (72.4) | 66 (27.6) | 118 (49.6) | 120 (50.4) | ||||
Worker nonexperiencing trouble | 455 (79.1) | 120 (20.9) | 445 (77) | 133 (23) | 349 (60.4) | 229 (39.6) | ||||
Healthcare Worker | No | 874 (75.1) | 290 (24.9) | 0.953 | 910 (78) | 257 (22) | 0.019 * | 672 (57.8) | 490 (42.2) | 0.727 |
Yes | 225 (75.3) | 74 (24.7) | 214 (71.6) | 85 (28.4) | 169 (66.7) | 129 (43.3) | ||||
Chronic Conditions | No | 866 (75) | 289 (25) | 0.766 | 875 (75.8) | 280 (24.2) | 0.080 | 676 (58.7) | 475 (41.3) | 0.119 |
Yes | 238 (75.8) | 76 (24.2) | 255 (80.4) | 62 (19.6) | 169 (53.8) | 145 (46.2) | ||||
Domestic Animal | No | 697 (75.2) | 230 (24.8) | 0.986 | 728 (78.4) | 201 (21.6) | 0.055 | 555 (59.9) | 371 (40.1) | 0.033 * |
Yes | 410 (75.2) | 135 (24.8) | 404 (74) | 142 (26) | 294 (54.2) | 248 (45.8) | ||||
Shopping Online | No | 461 (75.8) | 147 (24.2) | 0.618 | 480 (78.9) | 128 (21.1) | 0.077 | 357 (59.1) | 247 (40.9) | 0.273 |
Yes | 637 (74.7) | 216 (25.3) | 641 (75) | 214 (25) | 479 (56.2) | 373 (43.8) | ||||
Time Spent on Internet (Amount) † | Hours/day | 9 (6) | 9 (6) | 0.214 | 9 (6) | 9 (6) | 0.015 * | 8.5 (7) | 9 (6) | 0.019 * |
Time Spent on Internet (Trend) | Stable | 270 (82.8) | 56 (17.2) | <0.001 * | 265 (81) | 62 (19) | 0.002 * | 203 (63) | 119 (37) | 0.029 * |
Increased | 808 (73.4) | 293 (26.6) | 835 (75.8) | 267 (24.2) | 613 (55.9) | 483 (44.1) | ||||
Decreased | 11 (52.4) | 10 (47.6) | 10 (47.6) | 11 (52.4) | 10 (47.6) | 11 (52.4) | ||||
I don’t know | 21 (77.8) | 6 (22.2) | 23 (85.2) | 4 (14.8) | 20 (74.1) | 7 (25.9) | ||||
Source of Information (TV) | No | 328 (73.5) | 118 (26.5) | 0.303 | 330 (73.8) | 117 (26.2) | 0.072 | 252 (56.5) | 194 (43.5) | 0.513 |
Yes | 791 (76.1) | 249 (23.9) | 814 (78.1) | 228 (21.9) | 602 (58.3) | 430 (41.7) | ||||
Source of Information (Radio) | No | 852 (74.4) | 293 (25.6) | 0.144 | 868 (75.5) | 281 (24.5) | 0.031 * | 657 (57.5) | 486 (42.5) | 0.666 |
Yes | 267 (78.3) | 74 (21.7) | 276 (81.2) | 64 (18.8) | 197 (58.8) | 138 (41.2) | ||||
Source of Information (Internet) | No | 180 (74.7) | 61 (25.3) | 0.809 | 199 (81.9) | 44 (18.1) | 0.041 * | 146 (60.3) | 96 (39.7) | 0.380 |
Yes | 939 (75.4) | 306 (24.6) | 945 (75.8) | 301 (24.2) | 708 (57.3) | 528 (42.7) | ||||
Source of Information (Newspaper) | No | 506 (72.5) | 192 (27.5) | 0.018 * | 519 (74.2) | 180 (25.8) | 0.026 * | 382 (55.2) | 310 (44.8) | 0.060 |
Yes | 613 (77.8) | 175 (22.2) | 625 (79.1) | 165 (20.9) | 472 (60.1) | 314 (39.9) | ||||
Source of Information (Friends) | No | 945 (76.1) | 296 (23.9) | 0.089 | 962 (77.3) | 282 (22.7) | 0.302 | 719 (58.2) | 517 (41.8) | 0.492 |
Yes | 174 (71) | 71 (29) | 182 (74.3) | 63 (25.7) | 135 (55.8) | 107 (44.2) | ||||
Times Went Out † | Number/Week | 3 (6) | 3 (6) | 0.560 | 3 (6) | 4 (7) | 0.011 * | 3 (6) | 3 (6) | 0.943 |
Afraid to Leave Home | No | 790 (78.7) | 214 (21.3) | <0.001 * | 808 (80.3) | 198 (19.7) | <0.001 * | 619 (61.9) | 381 (38.1) | <0.001 * |
Yes | 294 (67) | 145 (33) | 299 (68.1) | 140 (31.9) | 210 (47.9) | 228 (52.1) | ||||
Facemask | Other | 303 (70.5) | 127 (29.5) | 0.005 * | 314 (73) | 116 (27) | 0.026 * | 240 (55.9) | 189 (44.1) | 0.373 |
Yes, always | 815 (77.3) | 239 (22.7) | 827 (78.4) | 228 (21.6) | 611 (58.5) | 434 (41.5) | ||||
Avoidance of Activity (Fear of Injuries) | No | 871 (77.2) | 257 (22.8) | 0.001 * | 881 (78) | 248 (22) | 0.023 * | 675 (60.2) | 447 (39.8) | <0.001 * |
Yes | 236 (68.6) | 108 (31.4) | 248 (72.1) | 96 (27.9) | 166 (48.5) | 176 (51.5) | ||||
Avoidance of Activity (Peer Pressure) | No | 864 (79.6) | 221 (20.4) | <0.001 * | 875 (80.6) | 210 (19.4) | <0.001 * | 661 (61.3) | 417 (38.7) | <0.001 * |
Yes | 239 (62.7) | 142 (37.3) | 248 (64.9) | 134 (35.1) | 179 (47.1) | 201 (52.9) | ||||
Avoidance of Health Services | No | 980 (75.9) | 311 (24.1) | 0.162 | 1000 (77.3) | 294 (22.7) | 0.289 | 750 (58.5) | 533 (41.5) | 0.177 |
Yes | 139 (71.3) | 56 (28.7) | 144 (73.8) | 51 (26.2) | 104 (53.3) | 91 (46.7) | ||||
Self-Medication | No | 1068 (75.6) | 344 (24.4) | 0.191 | 1095 (77.4) | 320 (22.6) | 0.026 * | 824 (58.7) | 580 (41.3) | 0.002 * |
Yes | 51 (68.9) | 23 (31.1) | 49 (66.2) | 25 (33.8) | 30 (40.5) | 44 (59.5) |
Variable | Sleep Disturbances | |||
---|---|---|---|---|
AdjOR (95% CI) | AdjOR (95% CI) | AdjOR (95% CI) | ||
Age | 1 (0.99–1.02) | 0.98 (0.97–1.00) * | 0.99 (0.98–1.00) | |
Gender | Male | - | - | - |
Female | 1.20 (0.86–1.68) | 2.06 (1.44–2.95) * | 1.70 (1.27–2.28) * | |
Marital Status | Single/Divorced | - | - | - |
Married/Cohabitant | 0.67 (0.48–0.94) * | 0.73 (0.52–1.03) | - | |
Education Level | High school or lower | - | - | - |
University | - | 1.20 (0.83–1.73) | - | |
Activity During Lockdown | No variation | - | - | - |
Smart working | - | - | 1.13 (0.75–1.69) | |
Guaranteed income | - | - | 1.55 (0.84–2.84) | |
Activity Stop/Reduction | - | - | 1.23 (0.78–1.94) | |
Economical Struggle | Non worker | - | - | - |
Worker experiencing trouble | 0.75 (0.48–1.17) | - | 1.18 (0.73–1.89) | |
Worker nonexperiencing trouble | 0.56 (0.38–0.83) * | - | 0.84 (0.58–1.24) | |
Chronic Conditions | No | - | - | - |
Yes | - | - | 1.67 (1.15–2.41) * | |
Domestic Animal | No | - | - | - |
Yes | - | - | 1.18 (0.88–1.58) | |
Shopping Online | No | - | - | - |
Yes | - | - | - | |
Time Spent on Internet (Amount) | Hours/day | 1.04 (1–1.09) | 1.02 (0.97–1.06) | 1.04 (1.00–1.08) |
Time Spent on Internet (Trend) | Stable | - | - | - |
Increased | 1.64 (1.07–2.53) * | 1.09 (0.72–1.66) | 1.07 (0.76–1.52) | |
Decreased | 3.02 (0.78–11.65) | 3.33 (0.85–13.06) | 0.87 (0.25–3.01) | |
I don’t know | 0.39 (0.05–3.19) | 0.69 (0.14–3.43) | 0.46 (0.12–1.76) | |
Source of Information (Radio) | No | - | - | - |
Yes | 0.69 (0.46–1.06) | 0.82 (0.54–1.24) | - | |
Source of Information (Internet) | No | - | - | - |
Yes | - | 1.02 (0.62–1.68) | - | |
Source of Information (Newspaper) | No | - | - | - |
Yes | 0.88 (0.64–1.22) | 0.84 (0.61–1.17) | - | |
Afraid to Leave Home | No | - | - | - |
Yes | 1.33 (0.93–1.90) | 1.58 (1.10–2.27) | 1.30 (0.94–1.79) | |
Facemask | Other | - | - | - |
Yes, always | 0.74 (0.53–1.04) | 0.83 (0.59–1.18) | - | |
Avoidance of Activity (Fear of Injuries) | No | - | - | - |
Yes | 1.19 (0.81–1.75) | 1.29 (0.87–1.91) | 1.38 (0.98–1.94) | |
Avoidance of Activity (Peer Pressure) | No | - | - | - |
Yes | 2.20 (1.57–3.10) * | 1.62 (1.14–2.29) * | 1.35 (0.99–1.85) | |
Self-Medication | No | - | - | - |
Yes | - | 1.89 (0.97–2.68) | 1.46 (0.77–2.76) |
Relevant Works | Country | Sample Size | Depression | Anxiety | Sleep Disturbances | |||
---|---|---|---|---|---|---|---|---|
Test | Frequency (%) | Test | Frequency (%) | Test | Frequency (%) | |||
Present work | Italy | 1515 | PHQ-2 | 24.7 | GAD-2 | 23.2 | - | 42.2 |
Cellini 2020 [23] | Italy | 1310 | DASS-21 | 21.2 | DASS-21 | 32.6 | PSQI | 52.4 |
Mazza 2020 [24] | Italy | 2766 | DASS-21 | 32.4 | DASS-21 | 18.7 | - | - |
Ahmed 2020 [6] | China | 1074 | BDI | 37.1 | BAI | 29 | - | - |
Huang 2020 [7] | China | 7236 | CES-D | 20.1 | GAD-7 | 35.1 | PSQI | 18.2 |
Lei 2020 [8] | China | 1593 | SDS | 22.4 | SAS | 12.9 | - | - |
Wang 2020 [9] | China | 1304 | DASS-21 | 16.5 | DASS-21 | 28.8 | - | - |
Gonzàlez-Sanguino 2020 [25] | Spain | 3480 | PHQ-2 | 18.7 | GAD-2 | 21.6 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualano, M.R.; Lo Moro, G.; Voglino, G.; Bert, F.; Siliquini, R. Effects of Covid-19 Lockdown on Mental Health and Sleep Disturbances in Italy. Int. J. Environ. Res. Public Health 2020, 17, 4779. https://doi.org/10.3390/ijerph17134779
Gualano MR, Lo Moro G, Voglino G, Bert F, Siliquini R. Effects of Covid-19 Lockdown on Mental Health and Sleep Disturbances in Italy. International Journal of Environmental Research and Public Health. 2020; 17(13):4779. https://doi.org/10.3390/ijerph17134779
Chicago/Turabian StyleGualano, Maria Rosaria, Giuseppina Lo Moro, Gianluca Voglino, Fabrizio Bert, and Roberta Siliquini. 2020. "Effects of Covid-19 Lockdown on Mental Health and Sleep Disturbances in Italy" International Journal of Environmental Research and Public Health 17, no. 13: 4779. https://doi.org/10.3390/ijerph17134779