Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, A.; Yick, K.-L.; Ng, S.; Yip, J. Case study on the effects of fit and material of sports gloves on hand performance. Appl. Ergon. 2019, 75, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Leyk, D.; Gorges, W.; Ridder, D.; Wunderlich, M.; Rüther, T.; Sievert, A.; Essfeld, D. Hand-grip strength of young men, women and highly trained female athletes. Eur. J. Appl. Physiol. 2007, 99, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Turnes, T.; Silva, B.A.; Kons, R.L.; Detanico, D. Is bilateral deficit in handgrip strength associated with performance in specific judo tasks? J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Ng, P.K.; Saptari, A.; Jee, K.S. Ergonomics aspects of knob designs: A literature review. TIES 2015, 16, 86–98. [Google Scholar] [CrossRef]
- Toselli, S.; Badicu, G.; Bragonzoni, L.; Spiga, F.; Mazzuca, P.; Campa, F. Comparison of the effect of different resistance training frequencies on phase angle and handgrip strength in obese women: A randomized controlled trial. IJERPH 2020, 17, 1163. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.; Toselli, S. Changes in phase angle and handgrip strength induced by suspension training in older women. Int. J. Sports Med. 2018, 39, 442–449. [Google Scholar] [CrossRef]
- Trivic, T.; Eliseev, S.; Tabakov, S.; Raonic, V.; Casals, C.; Jahic, D.; Jaksic, D.; Drid, P. Somatotypes and hand-grip strength analysis of elite cadet sambo athletes. Medicine 2020, 99. [Google Scholar] [CrossRef]
- Lee, K.-S.; Jung, M. Ergonomic evaluation of biomechanical hand function. Saf. Health Work 2014, 6, 9–17. [Google Scholar] [CrossRef]
- AlAhmari, K.; Silvian, S.P.; Reddy, R.S.; Kakaraparthi, V.N.; Ahmad, I.; Alam, M.M. Hand grip strength determination for healthy males in Saudi Arabia: A study of the relationship with age, body mass index, hand length and forearm circumference using a hand-held dynamometer. J. Int. Med. Res. 2017, 45, 540–548. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; López-Jaramillo, P.; Avezum, A.; Orlandini, A.; Serón, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Oliveira, V.H.F.; Wiechmann, S.L.; Narciso, A.M.; Deminice, R. Knee extension and flexion strength asymmetry in Human Immunodeficiency Virus positive subjects: A cross-sectional study. Braz. J. Phys. Ther. 2017, 21, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Oksuzyan, A.; Demakakos, P.; Shkolnikova, M.; Thinggaard, M.; Vaupel, J.W.; Christensen, K.; Shkolnikov, V.M. Handgrip strength and its prognostic value for mortality in Moscow, Denmark, and England. PLoS ONE 2017, 12, e0182684. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, N.D.D.A.; Lucareli, P.R.G. Do hip muscle weakness and dynamic knee valgus matter for the clinical evaluation and decision-making process in patients with patellofemoral pain? Braz. J. Phys. Ther. 2017, 22, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Matos, S.; Pitanga, F.; Maia, H. Handgrip strength as discriminator of sarcopenia and sarcopenia obesity in adults of the ELSA-Brasil. Eur. J. Public Health 2018, 28 (Suppl. 4). [Google Scholar] [CrossRef]
- Ekşioğlu, M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl. Ergon. 2016, 52, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, D.; Cahalane, E.; Conroy, R.; Fitzgerald, D.; Hardiman, O. Maximum voluntary isometric contraction: Reference values and clinical application. Amyotroph. Lateral Scler. 2007, 8, 47–55. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and pinch strength: Normative data for adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Sağiroğlu, I.; Kurt, C.; Kurt Ömürlü, I.; Çatikkaş, F. Does hand grip strength change with gender? The traditional method vs. the allometric normalisation method. EJPESS 2016, 2, 84–93. [Google Scholar]
- Chelliah, K.; Rizam, R. Association of dominant hand grip strength with anthropometric measurements and Body Mass Index. Int. J. Pharm. Sci. Res. 2018, 10, 525–531. [Google Scholar]
- Andersen-Ranberg, K.; Petersen, I.; Frederiksen, H.; MacKenbach, J.P.; Christensen, K. Cross-national differences in grip strength among 50+ year-old Europeans: Results from the SHARE study. Eur. J. Ageing 2009, 6, 227–236. [Google Scholar] [CrossRef]
- Bohannon, R. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Amo-Setién, F.J.; Leal-Costa, C.; Abajas-Bustillo, R.; González-Lamuño, D.; Redondo-Figuero, C. Factors associated with grip strength among adolescents: An observational study. J. Hand Ther. 2020, 33, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kamon, E.; Goldfuss, A.J. In-plant evaluation of the muscle strength of workers. Am. Ind. Hyg. Assoc. J. 1978, 39, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference values for adult grip strength measured with a Jamar dynamometer: A descriptive meta-analysis. Physiotherapy 2006, 92, 11–15. [Google Scholar] [CrossRef]
- Malina, R.M.; Zavaleta, A.N.; Little, B.B. Body size, fatness, and leanness of Mexican American children in Brownsville, Texas: Changes between 1972 and 1983. Am. J. Public Health 1987, 77, 573–577. [Google Scholar] [CrossRef]
- Häger, C.K.; Rösblad, B. Norms for grip strength in children aged 4-16 years. Acta Paediatr. 2002, 91, 617–625. [Google Scholar] [CrossRef]
- Singh, A.P.; Koley, S.; Sandhu, J.S. Association of hand grip strength with some anthropometric traits in collegiate population of Amritsar. Orient. Anthr. A Bi-Annual Int. J. Sci. Man 2009, 9, 99–110. [Google Scholar] [CrossRef]
- Koley, S.; Yadav, M.K. An association of hand grip strength with some anthropometric variables in Indian Cricket players. Phys. Educ. Sport 2009, 7, 113–123. [Google Scholar]
- Koley, S.; Singh, A.P. Pal an association of dominant hand grip strength with some anthropometric variables in indian collegiate population. Anthr. Anz. 2009, 67, 21–28. [Google Scholar] [CrossRef]
- Jürimäe, T.; Hurbo, T.; Jürimäe, J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO 2009, 60, 225–238. [Google Scholar] [CrossRef]
- Kaur, M. Age-related changes in hand grip strength among rural and urban Haryanvi Jat females. HOMO 2009, 60, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Kallman, D.A.; Plato, C.C.; Tobin, J.D. The Role of muscle loss in the age-related decline of grip strength: Cross-sectional and longitudinal perspectives. J. Gerontol. 1990, 45, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Vallow, J.; Preston, A.; Cooper, R.G. Predicting ‘normal’ grip strength for rheumatoid arthritis patients. Rheumatology 1999, 38, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Anakwe, R.E.; Huntley, J.; McEachan, J.E. Grip strength and forearm circumference in a healthy population. J. Hand Surg. Eur. Vol. 2007, 32, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Incel, N.A.; Ceceli, E.; Durukan, P.B.; Erdem, H.R.; Yorgancioglu, Z.R. Grip strength: Effect of hand dominance. Singap. Med. J. 2002, 43, 234–237. [Google Scholar]
- Dolcos, F.; Rice, H.J.; Cabeza, R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002, 26, 819–825. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip strength: A summary of studies comparing dominant and nondominant limb measurements. Percept. Mot. Ski. 2003, 96, 728–730. [Google Scholar] [CrossRef]
- Roy, E.A.; Bryden, P.; Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 2003, 53, 315–317. [Google Scholar] [CrossRef]
- Noguchi, T.; Demura, S.; Aoki, H. Superiority of the dominant and nondominant hands in static strength and controlled force exertion. Percept. Mot. Ski. 2009, 109, 339–346. [Google Scholar] [CrossRef]
- Aoki, H.; Demura, S. Laterality and accuracy of force exertion in elbow flexion. Adv. Phys. Educ. 2017, 7, 101–106. [Google Scholar] [CrossRef][Green Version]
- Corballis, M.C. Handedness and cerebral asymmetry: An evolutionary perspective. In The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres; Hugdahl, K., Westerhausen, R., Eds.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Annett, M. Handedness as a continuous variable with dextral shift: Sex, generation, and family handedness in subgroups of left- and right-handers. Behav. Genet. 1994, 24, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Pontier, M.; Dufour, A.-B.; Møller, A.P. Frequency-dependent maintenance of left handedness in humans. Proc. R. Soc. B Boil. Sci. 1996, 263, 1627–1633. [Google Scholar] [CrossRef]
- Bryden, M.; Roy, E.; Manus, I.; Mc Bulman-Fleming, M. On the Genetics and Measurement of Human Handedness. Laterality 1997, 2, 317–336. [Google Scholar] [CrossRef] [PubMed]
- McManus, C. Right Hand Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms and Culture; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Porac, C.; Coren, S.; Duncan, P. Life-span Age Trends in Laterality. J. Gerontol. 1980, 35, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, N.; Galaburda, A.M. Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology; MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Halpern, D.F.; Coren, S. Handedness and life span. N. Engl. J. Med. 1991, 324, 998. [Google Scholar] [CrossRef] [PubMed]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- Musalek, M. Skilled performance tests and their use in diagnosing handedness and footedness at children of lower school age 8–10. Front. Psychol. 2015, 5, 5. [Google Scholar] [CrossRef]
- Brown, S.; Roy, E.; Rohr, L.; Bryden, P. Using hand performance measures to predict handedness. Laterality 2006, 11, 1–14. [Google Scholar] [CrossRef]
- Whittington, J.E.; Richards, P.N. The stability of children’s laterality prevalences and their relationship to measures of performance. Br. J. Educ. Psychol. 1987, 57, 45–55. [Google Scholar] [CrossRef]
- Sommer, I.E.C.; Aleman, A.; Somers, M.; Boks, M.P.M.; Kahn, R.S. Sex differences in handedness, asymmetry of the Planum Temporale and functional language lateralization. Brain Res. 2008, 1206, 76–88. [Google Scholar] [CrossRef]
- Johnston, D.W.; Nicholls, M.E.R.; Shah, M.; Shields, M.A. Nature’s experiment? Handedness and early childhood development. Demography 2009, 46, 281–301. [Google Scholar] [CrossRef]
- Shahida, M.N.; Zawiah, M.S.; Case, K.; Shalahim, N.S.M. The relationship between anthropometry and hand grip strength among elderly Malaysians. Int. J. Ind. Ergon. 2015, 50, 17–25. [Google Scholar] [CrossRef]
- Rønn, P.F.; Andersen, G.S.; Lauritzen, T.; Christensen, D.L.; Aadahl, M.; Carstensen, B.; Jørgensen, M.E. Ethnic differences in anthropometric measures and abdominal fat distribution: A cross-sectional pooled study in Inuit, Africans and Europeans. J. Epidemiol. Community Health 2017, 71, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Mongraw-Chaffin, M.; Golden, S.H.; Allison, M.; Ding, J.; Ouyang, P.; Schreiner, P.J.; Szklo, M.; Woodward, M.; Young, J.H.; Anderson, C.A.M.; et al. The sex and race specific relationship between anthropometry and body fat composition determined from computed tomography: Evidence from the multi-ethnic study of atherosclerosis. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S.; et al. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Oldfield, R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Stöckel, T.; Vater, C. Hand preference patterns in expert basketball players: Interrelations between basketball-specific and everyday life behavior. Hum. Mov. Sci. 2014, 38, 143–151. [Google Scholar] [CrossRef]
- Gualdi-Russo, E.; Rinaldo, N.; Pasini, A.; Zaccagni, L. Hand preference and performance in basketball tasks. Int. J. Environ. Res. Public Health 2019, 16, 4336. [Google Scholar] [CrossRef]
- Lohman, T.J.; Roache, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Rinaldo, N.; Gualdi-Russo, E. Anthropometric techniques. Annali Online Università Ferrara Sez. Didattica Formazione Docente 2015, 10, 275–289. [Google Scholar]
- Centers for Disease Control and Prevention. National Youth fitness Survey (NYFS) Muscle Strength (grip) Procedures Manual. 2012. Available online: www.cdc.gov/nchs/data/nnyfs/Handgrip_Muscle_Strength.pdf (accessed on 7 October 2019).
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods; Lawrence Radiation Laboratory: Berkeley, CA, USA, 1956. [Google Scholar]
- James, W.P.T.; Leach, R.; Kalamara, E.; Shayeghi, M. The worldwide obesity epidemic. Obes. Res. 2001, 9, 228S–233S. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Frisancho, A. Anthropometric Standards: An. Interactive Nutritional Reference of Body Size and Body Composition for Children and Adults, 2nd ed.; University of Michigan Press: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Zaccagni, L.; Barbieri, D.; Gualdi-Russo, E. Body composition and physical activity in Italian university students. J. Transl. Med. 2014, 12, 120. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Gualdi-Russo, E.; Mazzuca, P.; Campa, F. Ethnic differences in body composition, sociodemographic characteristics and lifestyle in people with type 2 diabetes mellitus living in Italy. Endocrine 2019, 65, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Lunaheredia, E.; Martinpena, G.; Ruiz-Galiana, J. Handgrip dynamometry in healthy adults. Clin. Nutr. 2005, 24, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Hjelmborg, J.; Mortensen, J.; McGue, M.; Vaupel, J.W.; Christensen, K. Age trajectories of grip strength: Cross-sectional and longitudinal data among 8,342 danes aged 46 to 102. Ann. Epidemiol. 2006, 16, 554–562. [Google Scholar] [CrossRef]
- Chilima, D.M.; Ismail, S.J. Nutrition and handgrip strength of older adults in rural Malawi. Public Health Nutr. 2001, 4, 11–17. [Google Scholar] [CrossRef]
- Koley, S.; Kaur, N.; Sandhu, J. A study on hand grip strength in female labourers of Jalandhar, Punjab, India. J. LIFE Sci. 2009, 1, 57–62. [Google Scholar] [CrossRef]
- Massy-Westropp, N.; Gill, T.K.; Taylor, A.W.; Bohannon, R.; Hill, C.L. Hand grip strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef]
- Vuoksimaa, E.; Koskenvuo, M.; Rose, R.J.; Kaprio, J. Origins of handedness: A nationwide study of 30161 adults. Neuropsychologia 2009, 47, 1294–1301. [Google Scholar] [CrossRef]
- Annett, M. Handedness and cerebral dominance: The right shift theory. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 459–469. [Google Scholar] [CrossRef]
- Al Lawati, I.; Al Maskari, H.; Ma, S. “I am a lefty in a right-handed world”: Qualitative analysis of clinical learning experience of left-handed undergraduate dental students. Eur. J. Dent. Educ. 2019, 23, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Marcori, A.J.; Monteiro, P.H.M.; Okazaki, V.H.A. Changing handedness: What can we learn from preference shift studies? Neurosci. Biobehav. Rev. 2019, 107, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Innes, E. Handgrip strength testing: A review of the literature. Aust. Occup. Ther. J. 1999, 46, 120–140. [Google Scholar] [CrossRef]
- Nicolay, C.W.; Walker, A.L. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. Int. J. Ind. Ergon. 2005, 35, 605–618. [Google Scholar] [CrossRef]
- Werle, S.; Goldhahn, J.; Drerup, S.; Sprott, H.; Simmen, B.; Herren, D.B. Age- and gender-specific normative data of grip and pinch strength in a healthy adult Swiss Population. J. Hand Surg. Eur. Vol. 2009, 34, 76–84. [Google Scholar] [CrossRef]
- Koley, S.; Singh, A.P. Effect of hand dominance in grip strength in collegiate population of Amritsar, Punjab, India. Anthropologist 2010, 12, 13–16. [Google Scholar] [CrossRef]
- McGrath, R.; Hackney, K.J.; Ratamess, N.A.; Vincent, B.M.; Clark, B.C.; Kraemer, W.J. Absolute and body mass index normalized handgrip strength percentiles by gender, ethnicity, and hand dominance in Americans. Adv. Geriatr. Med. Res. 2019, 2. [Google Scholar] [CrossRef][Green Version]
- Dopsaj, M.; Ivanović, J.; Blagojević, M.; Vučković, G. Descriptive, functional and sexual dimorphism of explosive isometric hand grip force in healthy university students in Serbia. Facta Univ. Ser. Phys. Educ. Sport. 2009, 7, 125–139. [Google Scholar]
- Günther, C.M.; Burger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip strength in healthy caucasian adults: Reference values. J. Hand Surg. 2008, 33, 558–565. [Google Scholar] [CrossRef]
- Chun, S.-W.; Kim, W.; Choi, K.H. Comparison between grip strength and grip strength divided by body weight in their relationship with metabolic syndrome and quality of life in the elderly. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Schmidt, R.T.; Toews, J.V. Grip strength as measured by the Jamar dynamometer. Arch. Phys. Med. Rehabil. 1970, 51, 321–327. [Google Scholar] [PubMed]
- Crosby, C.A.; Wehbé, M.A. Hand strength: Normative values. J. Hand Surg. 1994, 19, 665–670. [Google Scholar] [CrossRef]
- Lee, K.-S.; Hwang, J. Investigation of grip strength by various body postures and gender in Korean adults. Work 2019, 62, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; De Luca, C.J.; Erim, Z. Hand dominance and motor unit firing behavior. J. Neurophysiol. 1998, 80, 1373–1382. [Google Scholar] [CrossRef]
- Deora, H.; Tripathi, M.; Yagnick, N.S.; Deora, S.; Mohindra, S.; Batish, A. Changing hands: Why being ambidextrous is a trait that needs to be acquired and nurtured in neurosurgery. World Neurosurg. 2019, 122, 487–490. [Google Scholar] [CrossRef]
- Özcan, A.; Tulum, Z.; Pınar, L.; Başkurt, F. Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and non-dominant hands within and between right- and left-handed subjects. J. Korean Med. Sci. 2004, 19, 874–878. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Ghosh, A.; Prasad, C.; Krishnan, K.; Chandrasharma, B. Age and anthropometric traits predict handgrip strength in healthy normals. J. Hand Microsurg. 2010, 2, 58–61. [Google Scholar] [CrossRef]
- Otten, L.; Bosy-Westphal, A.; Ordemann, J.; Rothkegel, E.; Stobäus, N.; Elbelt, U.; Norman, K. Abdominal fat distribution differently affects muscle strength of the upper and lower extremities in women. Eur. J. Clin. Nutr. 2016, 71, 372–376. [Google Scholar] [CrossRef]
- Ploegmakers, J.J.; Hepping, A.M.; Geertzen, J.H.; Bulstra, S.K.; Stevens, M. Grip strength is strongly associated with height, weight and gender in childhood: A cross sectional study of 2241 children and adolescents providing reference values. J. Physiother. 2013, 59, 255–261. [Google Scholar] [CrossRef]
- Keevil, V.L.; Luben, R.N.; Dalzell, N.; Hayat, S.; Sayer, A.A.; Wareham, N.J.; Khaw, K.-T. Cross-sectional associations between different measures of obesity and muscle strength in men and women in a British cohort study. J. Nutr. Health Aging 2015, 19, 3–11. [Google Scholar] [CrossRef]
- Detanico, D.; Arins, F.B.; Pupo, J.D.; Dos Santos, S.G. Strength parameters in judo athletes: An approach using hand dominance and weight categories. Hum. Mov. 2012, 13, 330–336. [Google Scholar] [CrossRef]
- Malina, R.M.; Katzmarzyk, P.T. Validity of the body mass index as an indicator of the risk and presence of overweight in adolescents. Am. J. Clin. Nutr. 1999, 70, 131S–136S. [Google Scholar] [CrossRef] [PubMed]
- Pizzigalli, L.; Cremasco, M.M.; La Torre, A.; Rainoldi, A.; Benis, R. Hand grip strength and anthropometric characteristics in Italian female national basketball teams. J. Sports Med. Phys. Fit. 2016, 57, 521–528. [Google Scholar]
- Haynes, E.; DeBeliso, M. The relationship between CrossFit performance and grip strength. Turk. J. Kinesiol. 2019, 5, 15–21. [Google Scholar] [CrossRef][Green Version]
- Jakobsen, L.H.; Rask, I.K.; Kondrup, J. Validation of handgrip strength and endurance as a measure of physical function and quality of life in healthy subjects and patients. Nutrition 2010, 26, 542–550. [Google Scholar] [CrossRef]
- Angst, F.; Drerup, S.; Werle, S.; Herren, D.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [Google Scholar] [CrossRef]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2006, 36, 228–235. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.-D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef]
- Norman, K.; Kirchner, H.; Freudenreich, M.; Ockenga, J.; Lochs, H.; Pirlich, M. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease—A randomized controlled trial. Clin. Nutr. 2008, 27, 48–56. [Google Scholar] [CrossRef]
Anthropometric Traits | Males | Females | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 178.0 | 7.0 | 163.6 | 6.1 | <0.0001 |
Weight (kg) | 74.9 | 11.1 | 58.2 | 8.0 | <0.0001 |
BMI (kg/m2) | 23.6 | 2.9 | 21.7 | 2.6 | <0.0001 |
WC (cm) | 79.7 | 7.8 | 69.3 | 5.4 | <0.0001 |
L MUAC (cm) | 30.4 | 3.5 | 26.5 | 2.8 | <0.0001 |
R MUAC (cm) | 30.7 | 3.3 | 26.6 | 2.7 | <0.0001 |
D MUAC (cm) | 30.6 | 3.3 | 26.6 | 2.8 | <0.0001 |
L Triceps skinfold (mm) | 9.8 | 4.8 | 17.0 | 5.1 | <0.0001 a |
R Triceps skinfold (mm) | 9.9 | 5.0 | 16.9 | 5.2 | <0.0001 a |
D Triceps skinfold (mm) | 9.9 | 4.9 | 16.9 | 5.1 | <0.0001 a |
D TUA (cm2) | 75.4 | 16.6 | 56.5 | 12.4 | <0.0001 |
D UMA (cm2) | 61.2 | 14.8 | 36.1 | 7.6 | <0.0001 |
D UFA (cm2) | 14.4 | 7.2 | 20.4 | 7.5 | <0.0001 |
D AFI (%) | 18.9 | 7.7 | 35.5 | 8.0 | <0.0001 |
%F | 14.4 | 4.4 | 25.8 | 4.5 | <0.0001 |
FM (kg) | 11.0 | 4.5 | 15.2 | 4.3 | <0.0001 |
FFM (kg) | 63.9 | 8.3 | 43.0 | 4.9 | <0.0001 |
L HGS (kg) | 43.9 | 8.1 | 27.5 | 5.0 | <0.0001 |
R HGS (kg) | 45.9 | 8.3 | 28.8 | 4.8 | <0.0001 |
D HGS (kg) | 45.7 | 8.2 | 28.9 | 4.7 | <0.0001 |
D HGS/weight | 0.6 | 0.1 | 0.5 | 0.1 | <0.0001 |
Sports and PA | |||||
Sport amount (h/week) | 7.0 | 4.0 | 6.1 | 4.1 | 0.0169 |
Sport practice (years) | 9.2 | 5.2 | 8.9 | 5.2 | 0.5458 |
PA (METs) | 4827.6 | 3268.7 | 3621.4 | 3300.5 | 0.0005 |
N | % | N | % | p | |
Weight status | <0.0001 | ||||
Under weight | 5 | 1.4 | 16 | 8.5 | |
Normal weight | 269 | 75.6 | 155 | 82.4 | |
Overweight | 70 | 19.7 | 15 | 8.0 | |
Obese | 12 | 3.4 | 2 | 1.1 | |
Fat status | 0.0065 | ||||
Under fat | 23 | 6.5 | 26 | 13.8 | |
Normal fat | 295 | 82.8 | 152 | 80.9 | |
Overfat | 34 | 9.6 | 10 | 5.3 | |
Very overfat | 4 | 1.1 | 0 | 0.0 | |
Distribution by categories of sports by METs | 0.9595 | ||||
METs < 2 | 11 | 3.1 | 6 | 3.3 | |
2 ≤ METs < 4 | 8 | 2.3 | 3 | 1.6 | |
4 ≤ METs < 6.5 | 74 | 20.8 | 40 | 21.2 | |
METs ≥ 6.5 | 262 | 73.8 | 139 | 73.9 | |
Distribution by categories of PA by METs | 0.0463 | ||||
Light | 13 | 3.6 | 11 | 5.6 | |
Moderate | 70 | 19.8 | 54 | 28.9 | |
Intense | 273 | 76.7 | 123 | 65.5 |
Handedness | Males | Females | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
R score | 45.0 | 42.7 | 54.2 | 37.7 | 0.0347 |
Frequencies | N | % | N | % | 0.0075 |
Right-handed | 212 | 59.6 | 137 | 72.9 | |
Left-handed | 18 | 5.1 | 8 | 4.3 | |
Ambidextrous | 126 | 35.4 | 43 | 22.9 |
Handedness Category | Right Handgrip Strength | Left Handgrip Strength | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Males | |||||
Right-handed | 46.0 | 8.8 | 43.6 | 8.4 | <0.0001 a |
Left-handed | 40.9 | 6.3 | 43.3 | 6.3 | 0.0468 b |
Ambidextrous | 46.6 | 7.9 | 44.6 | 8.3 | <0.0001 a |
Females | |||||
Right-handed | 29.0 | 4.9 | 27.4 | 5.2 | <0.0001 a |
Left-handed | 25.3 | 5.8 | 26.6 | 4.9 | 0.2489 b |
Ambidextrous | 28.8 | 4.1 | 28.0 | 4.5 | 0.0693 a |
Anthropometric Traits (Males) | 1st Tercile (Strength ≤ 42.0 kg) | 3rd Tercile (Strength ≥ 49.5 kg) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 176.0 | 6.6 | 180.5 | 6.6 | 0.0000 |
Weight (kg) | 69.5 | 8.8 | 80.9 | 10.9 | 0.0000 |
BMI (kg/m2) | 22.4 | 2.5 | 24.8 | 2.9 | 0.0000 |
WC (cm) | 76.8 | 6.8 | 82.1 | 8.6 | 0.0000 |
D Triceps skinfold (mm) | 9.7 | 4.6 | 9.9 | 5.8 | 0.1969 a |
D MUAC (cm) | 28.9 | 2.8 | 32.5 | 3.2 | 0.0000 |
D TUA (cm2) | 67.5 | 13.1 | 85.0 | 17.3 | 0.0000 |
D UMA (cm2) | 54.5 | 11.1 | 70.2 | 15.9 | 0.0000 |
D UFA (cm2) | 13.3 | 6.1 | 15.1 | 8.6 | 0.0647 |
D AFI (%) | 19.3 | 7.2 | 17.6 | 8.3 | 0.0963 |
%F | 14.0 | 4.3 | 14.4 | 4.7 | 0.5185 |
FM (kg) | 9.9 | 3.8 | 11.9 | 5.2 | 0.0008 |
FFM (kg) | 59.6 | 6.5 | 69.2 | 7.8 | 0.0000 |
Sports and PA | |||||
Sport amount (h/week) | 6.6 | 3.7 | 7.4 | 4.3 | 0.1149 |
Sport practice (years) | 10.1 | 5.1 | 8.2 | 5.2 | 0.0062 |
PA (METs) | 4431.9 | 2912.9 | 4853.0 | 3050.2 | 0.3625 |
% | % | p | |||
Weight status | 0.0001 | ||||
Underweight | 4 | 3.2 | 0 | 0.0 | |
Normal weight | 103 | 83.2 | 75 | 63.6 | |
Overweight | 16 | 12.8 | 36 | 30.5 | |
Obese | 1 | 0.8 | 7 | 5.9 | |
Fat status | 0.8168 | ||||
Under fat | 10 | 8.0 | 7 | 6.0 | |
Normal fat | 102 | 82.4 | 95 | 81.2 | |
Overfat | 11 | 8.8 | 14 | 12.0 | |
Obese | 1 | 0.8 | 1 | 0.9 | |
Distribution by categories of sports by METs | 0.0038 | ||||
METs < 2 | 4 | 3.2 | 4 | 3.4 | |
2 ≤ METs < 4 | 0 | 0.0 | 4 | 3.4 | |
4 ≤ METs < 6.5 | 18 | 14.5 | 35 | 29.7 | |
METs ≥ 6.5 | 102 | 82.3 | 75 | 63.6 | |
Distribution by categories of PA by METs | 0.7627 | ||||
Light | 3 | 2.7 | 2 | 2.1 | |
Moderate | 28 | 22.7 | 23 | 19.1 | |
Intense | 93 | 74.7 | 93 | 78.7 | |
Handedness categories | 0.2947 | ||||
Right-handed | 75 | 60.8 | 76 | 64.4 | |
Left-handed | 10 | 8.0 | 4 | 3.4 | |
Ambidextrous | 39 | 31.2 | 38 | 32.2 |
Anthropometric Traits (Females) | 1st Tercile (Strength ≤ 26.8 kg) | 3rd Tercile (Strength ≥ 30.5 kg) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 162.0 | 6.4 | 165.1 | 6.2 | 0.0062 |
Weight (kg) | 55.6 | 6.1 | 61.8 | 8.7 | 0.0000 |
BMI (kg/m2) | 21.2 | 2.1 | 22.6 | 2.8 | 0.0015 |
WC (cm) | 68.2 | 4.4 | 70.7 | 5.2 | 0.0037 |
D Triceps skinfold (mm) | 15.5 | 4.8 | 18.0 | 4.9 | 0.0026 a |
D MUAC (cm) | 25.7 | 2.1 | 27.5 | 2.8 | 0.0002 |
D TUA (cm2) | 52.9 | 8.9 | 60.5 | 13.4 | 0.0007 |
D UMA (cm2) | 34.2 | 6.4 | 38.4 | 8.3 | 0.0036 |
D UFA (cm2) | 18.7 | 6.0 | 22.1 | 7.8 | 0.0107 |
D AFI (%) | 35.0 | 8.4 | 36.2 | 7.3 | 0.4105 |
%F | 25.2 | 4.5 | 26.6 | 4.0 | 0.0597 |
FM (kg) | 14.1 | 3.4 | 16.7 | 4.5 | 0.0006 |
FFM (kg) | 41.5 | 4.3 | 45.1 | 5.1 | 0.0000 |
Sports and PA | |||||
Sport amount (h/week) | 5.4 | 3.6 | 7.0 | 3.7 | 0.0153 |
Sport practice (yrs) | 9.0 | 5.6 | 9.1 | 5.2 | 0.9536 |
PA (METs) | 2910.4 | 3080.9 | 3908.1 | 3373.6 | 0.1571 |
% | % | p | |||
Weight status | 0.3834 | ||||
Under weight | 4 | 6.9 | 4 | 6.0 | |
Normal weight | 51 | 87.9 | 54 | 80.6 | |
Overweight | 3 | 5.2 | 7 | 10.4 | |
Obese | 0 | 0.0 | 2 | 3.0 | |
Fat status | 0.1797 | ||||
Under fat | 11 | 18.3 | 5 | 7.5 | |
Normal fat | 45 | 78.3 | 59 | 88.1 | |
Overfat | 2 | 3.3 | 3 | 4.5 | |
Obese | 0 | 0.0 | 0 | 0.0 | |
Distribution by categories of sports by METs | 0.4536 | ||||
METs < 2 | 1 | 1.8 | 2 | 3.0 | |
2 ≤ METs < 4 | 2 | 3.5 | 0 | 0.0 | |
4 ≤ METs < 6.5 | 9 | 15.8 | 12 | 17.9 | |
METs ≥ 6.5 | 46 | 78.9 | 53 | 79.1 | |
Distribution by categories of PA by METs | 0.0948 | ||||
Light | 3 | 5.9 | 4 | 6.8 | |
Moderate | 22 | 38.2 | 14 | 20.3 | |
Intense | 32 | 55.9 | 49 | 72.9 | |
Handedness categories | 0.1770 | ||||
Right-handed | 39 | 67.2 | 49 | 73.1 | |
Left-handed | 5 | 8.6 | 1 | 1.5 | |
Ambidextrous | 14 | 24.1 | 17 | 25.4 |
Dominant Handgrip Strength | Males | Females |
---|---|---|
Stature | 0.229 * | 0.245 * |
Weight | 0.436 * | 0.392 * |
BMI | 0.372 * | 0.293 * |
WC | 0.272 * | 0.270 * |
D MUAC | 0.502 * | 0.319 * |
D Triceps skinfold (Log) | −0.047 | 0.201 * |
D TUA | 0.501 * | 0.317 * |
D UMA | 0.522 * | 0.275 * |
D UFA | 0.089 | 0.232 * |
D AFI | −0.125 * | 0.076 |
%F | 0.037 | 0.162 |
FM | 0.176 * | 0.300 * |
FFM | 0.490 * | 0.375 * |
Predictor Variables | Dominant Handgrip Strength | ||
---|---|---|---|
β | t | p | |
Sex (male) | 0.1980 | 3.4323 | 0.0007 |
D UMA | 0.3463 | 5.9100 | 0.0000 |
D AFI | 0.1345 | 2.1342 | 0.0335 |
FM | −0.1784 | −3.6116 | 0.0003 |
FFM | 0.4420 | 6.2158 | 0.0000 |
R2 | 0.7491 | ||
R2 adjusted | 0.7457 | ||
p | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccagni, L.; Toselli, S.; Bramanti, B.; Gualdi-Russo, E.; Mongillo, J.; Rinaldo, N. Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. Int. J. Environ. Res. Public Health 2020, 17, 4273. https://doi.org/10.3390/ijerph17124273
Zaccagni L, Toselli S, Bramanti B, Gualdi-Russo E, Mongillo J, Rinaldo N. Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. International Journal of Environmental Research and Public Health. 2020; 17(12):4273. https://doi.org/10.3390/ijerph17124273
Chicago/Turabian StyleZaccagni, Luciana, Stefania Toselli, Barbara Bramanti, Emanuela Gualdi-Russo, Jessica Mongillo, and Natascia Rinaldo. 2020. "Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality" International Journal of Environmental Research and Public Health 17, no. 12: 4273. https://doi.org/10.3390/ijerph17124273
APA StyleZaccagni, L., Toselli, S., Bramanti, B., Gualdi-Russo, E., Mongillo, J., & Rinaldo, N. (2020). Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. International Journal of Environmental Research and Public Health, 17(12), 4273. https://doi.org/10.3390/ijerph17124273