High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ADBP | Aorta diastolic blood pressure | 
| ASBP | Aorta systolic blood pressure | 
| AIx | Augmentation index (AIx) | 
| AP | Augmentation pressure (AP) | 
| BL | Baseline | 
| BM | Body mass | 
| BMI | Body mass index | 
| CRP | Control group | 
| CBP | Central blood pressure | 
| CHOL | Cholesterol-total | 
| CRP | C-reactive protein | 
| DBP | Diastolic blood pressure | 
| EDTA | Ethylene diamine tetra acetic acid | 
| HbA1c | Glycated hemoglobin | 
| HDL | High-density lipoprotein | 
| I | Intervention group | 
| kg | Kilogram | 
| LDL | Low-density lipoprotein | 
| HRmax | Maximal heart rate | 
| O2max | Maximal oxygen uptake | 
| m/s | meter per second | 
| mg/L | milligram per liter | 
| mL | Milliliter | 
| mmHg | millimeter mercury | 
| mmol/L | millimole per. liter | 
| min | Minute | 
| PAI | Personalized activity intelligence | 
| PA | Physical activity | 
| PO | Post-intervention | 
| PP | Pulse pressure | 
| PWV | Pulse wave velocity | 
| RHR | Resting heart rate | 
| RPM | Rotation per minute | 
| s | Second | 
| SD | Standard deviation | 
| SBP | Systolic blood pressure | 
| VPA | Vigorous physical activity | 
References
- Schnall, P.L.; Dobson, M.; Landsbergis, P. Globalization, work, and cardiovascular disease. Int. J. Health Serv. Plan. Adm. Eval. 2016, 46, 656–692. [Google Scholar] [CrossRef]
 - Eurofond First findings: Sixth European Working Conditions Survey—Résumé; Eurofond: Dublin, Ireland, 2015; p. 8.
 - Vyas, M.V.; Garg, A.X.; Iansavichus, A.V.; Costella, J.; Donner, A.; Laugsand, L.E.; Janszky, I.; Mrkobrada, M.; Parraga, G.; Hackam, D.G. Shift work and vascular events: Systematic review and meta-analysis. BMJ 2012, 345, 4800. [Google Scholar] [CrossRef]
 - Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand. J. Work. Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef]
 - Theorell, T.; Akerstedt, T. Day and night work: Changes in cholesterol, uric acid, glucose and potassium in serum and in circadian patterns of urinary catecholamine excretion. A longitudinal cross-over study of railway workers. Acta Med. Scand. 1976, 200, 47–53. [Google Scholar] [CrossRef]
 - Ulhôa, M.A.; Marqueze, E.C.; Burgos, L.G.A.; Moreno, C.R.C. Shift work and endocrine disorders. Int. J. Endocrinol. 2015, 2015, 826249. [Google Scholar] [CrossRef]
 - Amano, H.; Fukuda, Y.; Yokoo, T.; Yamaoka, K. Interleukin-6 Level among Shift and Night Workers in Japan: Cross-Sectional Analysis of the J-HOPE Study. J. Atheroscler. Thromb. 2018, 25, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
 - Pavanello, S.; Stendardo, M.; Mastrangelo, G.; Bonci, M.; Bottazzi, B.; Campisi, M.; Nardini, M.; Leone, R.; Mantovani, A.; Boschetto, P. Inflammatory Long Pentraxin 3 is Associated with Leukocyte Telomere Length in Night-Shift Workers. Front. Immunol. 2017, 8, 516. [Google Scholar] [CrossRef] [PubMed]
 - Puttonen, S.; Viitasalo, K.; Harma, M. Effect of Shiftwork on Systemic Markers of Inflammation. Chronobiol. Int. 2011, 28, 528–535. [Google Scholar] [CrossRef] [PubMed]
 - Morris, C.J.; Purvis, T.E.; Mistretta, J.; Hu, K.; Scheer, F.A.J.L. Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J. Biol. Rhythms 2017, 32, 154–164. [Google Scholar] [CrossRef] [PubMed]
 - Aho, V.; Ollila, H.M.; Rantanen, V.; Kronholm, E.; Surakka, I.; van Leeuwen, W.M.A.; Lehto, M.; Matikainen, S.; Ripatti, S.; Härmä, M.; et al. Partial sleep restriction activates immune response-related gene expression pathways: Experimental and epidemiological studies in humans. PLoS ONE 2013, 8, e77184. [Google Scholar] [CrossRef]
 - Skogstad, M.; Mamen, A.; Lunde, L.-K.; Ulvestad, B.; Matre, D.; Aass, H.C.D.; Øvstebø, R.; Nielsen, P.; Samuelsen, K.N.; Skare, Ø.; et al. Shift Work Including Night Work and Long Working Hours in Industrial Plants Increases the Risk of Atherosclerosis. Int. J. Environ. Res. Public Health 2019, 16, 521. [Google Scholar] [CrossRef] [PubMed]
 - Aspenes, S.T.; Nilsen, T.I.L.; Skaug, E.-A.; Bertheussen, G.F.; Ellingsen, Ø.; Vatten, L.; Wisløff, U. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med. Sci. Sports Exerc. 2011, 43, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
 - McElvenny, D.M.; Crawford, J.O.; Cherrie, J.W. What should we tell shift workers to do to reduce their cancer risk? Occup. Med. Oxf. Engl. 2018, 68, 5–7. [Google Scholar] [CrossRef]
 - Cheng, W.-J.; Härmä, M.; Ropponen, A.; Karhula, K.; Koskinen, A.; Oksanen, T. Shift work and physical inactivity: Findings from the Finnish Public Sector Study with objective working hour data. Scand. J. Work. Environ. Health 2019, 46, 293–301. [Google Scholar] [CrossRef]
 - Härmä, M.I.; Ilmarinen, J.; Knauth, P.; Rutenfranz, J.; Hänninen, O. Physical training intervention in female shift workers: I. The effects of intervention on fitness, fatigue, sleep, and psychosomatic symptoms. Ergonomics 1988, 31, 39–50. [Google Scholar] [CrossRef]
 - Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Titze, S.; Biddle, S.J.; Bauman, A.E.; Oja, P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br. J. Sports Med. 2019, 0, 1–9. [Google Scholar] [CrossRef] [PubMed]
 - Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef]
 - Ingjer, F. Factors influencing assessment of maximal heart rate. Scand. J. Med. Sci. Sports 1991, 1, 134–140. [Google Scholar] [CrossRef]
 - Moholdt, T.; Wisløff, U.; Lydersen, S.; Nauman, J. Current physical activity guidelines for health are insufficient to mitigate long-term weight gain: More data in the fitness versus fatness debate (The HUNT study, Norway). Br. J. Sports Med. 2014, 48, 1489–1496. [Google Scholar] [CrossRef]
 - Nes, B.M.; Gutvik, C.R.; Lavie, C.J.; Nauman, J.; Wisløff, U. Personalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical Activity. Am. J. Med. 2017, 130, 328–336. [Google Scholar] [CrossRef]
 - Tjønna, A.E.; Ramos, J.S.; Pressler, A.; Halle, M.; Jungbluth, K.; Ermacora, E.; Salvesen, Ø.; Rodrigues, J.; Bueno, C.R.; Munk, P.S.; et al. EX-MET study: Exercise in prevention on of metabolic syndrome—A randomized multicenter trial: Rational and design. BMC Public Health 2018, 18, 437. [Google Scholar] [CrossRef] [PubMed]
 - Kieffer, S.K.; Zisko, N.; Coombes, J.S.; Nauman, J.; Wisløff, U. Personal Activity Intelligence and Mortality in Patients with Cardiovascular Disease: The HUNT Study. Mayo Clin. Proc. 2018, 93, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
 - van Poppel, M.N.M.; Chinapaw, M.J.M.; Mokkink, L.B.; van Mechelen, W.; Terwee, C.B. Physical activity questionnaires for adults: A systematic review of measurement properties. Sports Med. 2010, 40, 565–600. [Google Scholar] [CrossRef] [PubMed]
 - Milton, K.; Clemes, S.; Bull, F. Can a single question provide an accurate measure of physical activity? Br. J. Sports Med. 2013, 47, 44–48. [Google Scholar] [CrossRef]
 - Kurtze, N.; Rangul, V.; Hustvedt, B.-E.; Flanders, W.D. Reliability and validity of self-reported physical activity in the Nord-Trøndelag Health Study (HUNT 2). Eur. J. Epidemiol. 2007, 22, 379–387. [Google Scholar] [CrossRef]
 - Skogstad, M.; Lunde, L.-K.; Skare, Ø.; Mamen, A.; Alfonso, J.H.; Øvstebø, R.; Ulvestad, B. Physical activity initiated by employer and its health effects; an eight week follow-up study. BMC Public Health 2016, 16, 377. [Google Scholar] [CrossRef]
 - Sookoian, S.; Gemma, C.; Fernández Gianotti, T.; Burgueño, A.; Alvarez, A.; González, C.D.; Pirola, C.J. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J. Intern. Med. 2007, 261, 285–292. [Google Scholar] [CrossRef]
 - Ferguson, J.M.; Costello, S.; Neophytou, A.M.; Balmes, J.R.; Bradshaw, P.T.; Cullen, M.R.; Eisen, E.A. Night and rotational work exposure within the last 12 months and risk of incident hypertension. Scand. J. Work. Environ. Health 2019, 45, 256–266. [Google Scholar] [CrossRef]
 - Jankowiak, S.; Backé, E.; Liebers, F.; Schulz, A.; Hegewald, J.; Garthus-Niegel, S.; Nübling, M.; Blankenberg, S.; Pfeiffer, N.; Lackner, K.J.; et al. Current and cumulative night shift work and subclinical atherosclerosis: Results of the Gutenberg Health Study. Int. Arch. Occup. Environ. Health 2016, 89, 1169–1182. [Google Scholar] [CrossRef]
 - Chen, C.-C.; Shiu, L.-J.; Li, Y.-L.; Tung, K.-Y.; Chan, K.-Y.; Yeh, C.-J.; Chen, S.-C.; Wong, R.-H. Shift work and arteriosclerosis risk in professional bus drivers. Ann. Epidemiol. 2010, 20, 60–66. [Google Scholar] [CrossRef]
 - Zhang, Y.; Qi, L.; Xu, L.; Sun, X.; Liu, W.; Zhou, S.; van de Vosse, F.; Greenwald, S.E. Effects of exercise modalities on central hemodynamics, arterial stiffness and cardiac function in cardiovascular disease: Systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2018, 13, e0200829. [Google Scholar] [CrossRef] [PubMed]
 - Karlsson, B.H.; Knutsson, A.K.; Lindahl, B.O.; Alfredsson, L.S. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int. Arch. Occup. Environ. Health 2003, 76, 424–430. [Google Scholar] [CrossRef] [PubMed]
 - Esquirol, D.Y.; Bongard, V.; Mabile, L.; Jonnier, B.; Soulat, J.-M.; Perret, B. Shift Work and Metabolic Syndrome: Respective Impacts of Job Strain, Physical Activity, and Dietary Rhythms. Chronobiol. Int. 2009, 26, 544–559. [Google Scholar] [CrossRef] [PubMed]
 - Karlsson, B.; Knutsson, A.; Lindahl, B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 2001, 58, 747–752. [Google Scholar] [CrossRef]
 - Aho, V.; Ollila, H.M.; Kronholm, E.; Bondia-Pons, I.; Soininen, P.; Kangas, A.J.; Hilvo, M.; Seppälä, I.; Kettunen, J.; Oikonen, M.; et al. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef]
 - Shan, Z.; Li, Y.; Zong, G.; Guo, Y.; Li, J.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Schernhammer, E.S.; Bhupathiraju, S.N. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: Results from two large US cohorts of female nurses. BMJ 2018, 363. [Google Scholar] [CrossRef]
 - van Leeuwen, W.M.A.; Lehto, M.; Karisola, P.; Lindholm, H.; Luukkonen, R.; Sallinen, M.; Härmä, M.; Porkka-Heiskanen, T.; Alenius, H. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS ONE 2009, 4, e4589. [Google Scholar] [CrossRef]
 - Puttonen, S.; Kivimäki, M.; Elovainio, M.; Pulkki-Råback, L.; Hintsanen, M.; Vahtera, J.; Telama, R.; Juonala, M.; Viikari, J.S.A.; Raitakari, O.T.; et al. Shift work in young adults and carotid artery intima-media thickness: The Cardiovascular Risk in Young Finns study. Atherosclerosis 2009, 205, 608–613. [Google Scholar] [CrossRef]
 - Byrkjeland, R.; Stensæth, K.-H.; Anderssen, S.; Njerve, I.U.; Arnesen, H.; Seljeflot, I.; Solheim, S. Effects of exercise training on carotid intima-media thickness in patients with type 2 diabetes and coronary artery disease. Influence of carotid plaques. Cardiovasc. Diabetol. 2016, 15, 13. [Google Scholar] [CrossRef]
 




| Variables | Shift Workers Plant A (N = 42)  | Shift Workers Plant B (N = 23)  | ||||
|---|---|---|---|---|---|---|
| Number | Mean | SD | Number | Mean | SD | |
| Age (years) | 40.5 | 11.0 | 40.0 | 12.5 | ||
| Women | 5 | 1 | ||||
| BMI (kg/m2) | 27.2 | 5.2 | 26.4 | 4.4 | ||
| Pack-years | 9.2 | 14.4 | 5.0 | 8.0 | ||
| Daily smokers | 11 | 3 | ||||
| College/University | 2 | 1 | ||||
| No. of years as shift worker | 14.5 | 10.1 | 15.0 | 9.9 | ||
| Physical activity, high intensity (min) | 90.1 | 145 | 67.0 | 69.0 | ||
| Group | Variable | Minimum | Maximum | Mean | SD | 
|---|---|---|---|---|---|
| Control | Age (yr) | 21.0 | 57.0 | 38.4 | 11.5 | 
| Height (cm) | 160.0 | 198.0 | 181.8 | 7.3 | |
| Body Mass (kg) | 55.0 | 130.0 | 89.8 | 19.1 | |
| Intervention | Age (yr) | 28.0 | 58.0 | 43.1 | 10.5 | 
| Height (cm) | 155.0 | 190.0 | 175.5 | 9.2 | |
| Body Mass (kg) | 48.0 | 123.0 | 82.8 | 18.8 | 
| Variables | Control | Intervention | ||||||
|---|---|---|---|---|---|---|---|---|
| n | Mean | SD | SEM | n | Mean | SD | SEM | |
| BL BM (kg) | 31 | 88.8 | 18.6 | 3.3 | 19 | 82.8 | 18.8 | 4.3 | 
| PO BM (kg)# | 31 | 89.5 * | 18.7 | 3.4 | 19 | 81.7 | 17.8 | 4.1 | 
| BL SBP (mmHg) | 30 | 126.0 | 14.5 | 2.6 | 19 | 124.4 | 10.6 | 2.4 | 
| PO SBP (mmHg) | 31 | 124.2 | 14.3 | 2.6 | 19 | 120.1 | 12.3 | 2.8 | 
| BL DBP (mmHg) | 30 | 82.4 | 7.6 | 1.4 | 19 | 83.6 | 6.4 | 1.6 | 
| PO DBP (mmHg) | 31 | 80.6 | 9.3 | 1.7 | 19 | 80.3 | 9.5 | 2.2 | 
| BL ASBP (mmHg) | 31 | 111.3 | 13.0 | 2.3 | 19 | 112.8 | 10.2 | 2.4 | 
| PO ASBP (mmHg) | 31 | 109.2 | 18.3 | 3.3 | 19 | 109.3 * | 8.4 | 1.9 | 
| BL ADBP (mmHg) | 31 | 72.0 | 11.8 | 2.1 | 19 | 75.2 | 8.1 | 1.9 | 
| PO ADBP (mmHg) | 30 | 73.8 | 8.8 | 1.6 | 19 | 72.2 * | 8.0 | 1.8 | 
| BL PP (mmHg) | 31 | 38.1 | 6.2 | 1.1 | 19 | 37.6 | 5.6 | 1.3 | 
| PO PP (mmHg) | 31 | 37.9 | 8.5 | 1.5 | 19 | 37.1 | 4.5 | 1.0 | 
| BL PWV (m/s) | 29 | 7.6 | 1.4 | 0.3 | 18 | 7.7 | 1.4 | 0.3 | 
| PO PWV (m/s) | 30 | 7.8 | 1.8 | 0.3 | 19 | 7.9 | 1.3 | 0.3 | 
| BL AP (mmHg) | 31 | 9.0 | 5.7 | 1.0 | 19 | 10.0 | 3.9 | 0.9 | 
| PO AP (mmHg) | 31 | 8.1 | 4.8 | 0.9 | 19 | 9.4 | 3.6 | 0.8 | 
| BL CRP (mg/L) | 31 | 1.6 | 2.4 | 0.4 | 19 | 2.3 | 2.6 | 0.6 | 
| PO CRP (mg/L) | 30 | 2.7 | 4.5 | 0.8 | 18 | 2.1 | 1.9 | 0.4 | 
| BL CHOL (mmol/L) | 31 | 4.7 | 0.8 | 0.1 | 19 | 5.2 | 0.9 | 0.2 | 
| PO CHOL (mmol/L)# | 30 | 4.9 | 1.0 | 0.2 | 18 | 4.8 | 0.8 | 0.2 | 
| BL HDL (mmol/L) | 31 | 1.2 | 0.2 | 0.0 | 19 | 1.3 | 0.4 | 0.1 | 
| PO HDL (mmol/L) | 30 | 1.2 | 0.2 | 0.0 | 18 | 1.3 | 0.4 | 0.1 | 
| BL LDL (mmol/L) | 31 | 3.0 | 0.7 | 0.1 | 19 | 3.3 | 0.9 | 0.2 | 
| PO LDL (mmol/L) | 30 | 3.2 | 0.9 | 0.7 | 18 | 3.1 | 0.9 | 0.2 | 
| BL HbA1c (mmol/mol) | 31 | 34.3 | 3.9 | 0.7 | 19 | 34.4 | 4.0 | 0.9 | 
| PO HbA1c (mmol/mol) | 30 | 32.8 ** | 4.6 | 0.8 | 18 | 32.5 ** | 3.5 | 0.8 | 
| BL VPA (min/week) | 31 | 69.0 | 73.5 | 13.2 | 19 | 85.8 | 126.8 | 29.0 | 
| PO VPA (min/week) | 29 | 84.2 | 118.9 | 22.1 | 18 | 106.2 | 53.0 | 12.5 | 
| BL rO2max (mL/kg/min) | 11 | 44 | 9 | 3 | 14 | 44 | 8 | 2 | 
| PO rO2max (mL/kg/min) | 11 | 45 | 9 | 3 | 14 | 44 | 7 | 2 | 
| BL aO2max (mL/min) | 11 | 3609 | 523 | 158 | 14 | 3509 | 436 | 117 | 
| PO aO2max (mL/min) | 11 | 3646 | 381 | 115 | 14 | 3489 | 469 | 125 | 
| Baseline | Post-Intervention | |
|---|---|---|
| BMI (kg/m2) | 34.7 | 34.0 | 
| RHR a (bpm) | 73 | 55 | 
| SBP a (mmHg) | 133 | 114 b | 
| DBP a (mmHg) | 90 | 72 b | 
| ASBP (mmHg) | 121 | 109 b | 
| ADBP (mmHg) | 76 | 69 b | 
| AP (mmHg) | 11 | 8 | 
| AIx | 25 | 19 b | 
| PWV (m/s) | 9.0 | 7.9 | 
| CRP (mg/L) | 6.2 | 7.5 | 
| Cholesterol/HDL (mmol/L) | 4.2 | 4.0 | 
| HbA1c (mmol/mol) | 32 | 30 | 
| O2max (ml/kg/min) | 33.8 | 34.9 | 
| Variable | Control | Intervention | 
|---|---|---|
| CHOL | −4 | 2 | 
| HDL | 2 | 0 | 
| LDL | 1 | 2 | 
| CRP | −3 | 0 | 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamen, A.; Øvstebø, R.; Sirnes, P.A.; Nielsen, P.; Skogstad, M. High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry. Int. J. Environ. Res. Public Health 2020, 17, 3943. https://doi.org/10.3390/ijerph17113943
Mamen A, Øvstebø R, Sirnes PA, Nielsen P, Skogstad M. High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry. International Journal of Environmental Research and Public Health. 2020; 17(11):3943. https://doi.org/10.3390/ijerph17113943
Chicago/Turabian StyleMamen, Asgeir, Reidun Øvstebø, Per Anton Sirnes, Pia Nielsen, and Marit Skogstad. 2020. "High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry" International Journal of Environmental Research and Public Health 17, no. 11: 3943. https://doi.org/10.3390/ijerph17113943
APA StyleMamen, A., Øvstebø, R., Sirnes, P. A., Nielsen, P., & Skogstad, M. (2020). High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry. International Journal of Environmental Research and Public Health, 17(11), 3943. https://doi.org/10.3390/ijerph17113943
        
