Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lahlaoui, H.; Ben Haj Khalifa, A.; Ben Moussa, M. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum beta-lactamase (ESBL). Med. Mal. Infect. 2014, 44, 400–404. [Google Scholar] [CrossRef]
- Hendrik, T.C.; Voor In’t Holt, A.F.; Vos, M.C. Clinical and Molecular Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Klebsiella spp.: A Systematic Review and Meta-Analyses. PLoS ONE 2015, 10, e0140754. [Google Scholar] [CrossRef] [PubMed]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal Colonization with Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors among Healthy Individuals: A Systematic Review and Metaanalysis. Clin. Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M beta-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS ONE 2012, 7, e53039. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guenther, S.; Bethe, A.; Fruth, A.; Semmler, T.; Ulrich, R.G.; Wieler, L.H.; Ewers, C. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. PLoS ONE 2012, 7, e50331. [Google Scholar] [CrossRef]
- Brechet, C.; Plantin, J.; Sauget, M.; Thouverez, M.; Talon, D.; Cholley, P.; Guyeux, C.; Hocquet, D.; Bertrand, X. Wastewater treatment plants release large amounts of extended-spectrum beta-lactamase-producing Escherichia coli into the environment. Clin. Infect. Dis. 2014, 58, 1658–1665. [Google Scholar] [CrossRef]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; Waldenstrom, J.; McMahon, B.J.; Tolf, C.; Olsen, B.; Drobni, M. Carriage of CTX-M type extended spectrum beta-lactamases (ESBLs) in gulls across Europe. Acta Vet. Scand. 2015, 57, 74. [Google Scholar] [CrossRef]
- Lowe, C.F.; Romney, M.G. Bedbugs as vectors for drug-resistant bacteria. Emerg. Infect. Dis. 2011, 17, 1132–1134. [Google Scholar] [CrossRef] [PubMed]
- Wannigama, D.L.; Dwivedi, R.; Zahraei-Ramazani, A. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India. J. Arthropod-Borne Dis. 2014, 8, 10–20. [Google Scholar]
- Blaak, H.; van Hoek, A.H.; Hamidjaja, R.A.; van der Plaats, R.Q.; Kerkhof-de Heer, L.; de Roda Husman, A.M.; Schets, F.M. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment. PLoS ONE 2015, 10, e0135402. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Okubo, T.; Matsushita, M.; Wataji, M.; Iwasaki, S.; Hayasaka, K.; Akizawa, K.; Matsuo, J.; Shimizu, C.; Yamaguchi, H. Analysis of adult damselfly fecal material aids in the estimation of antibiotic-resistant Enterobacterales contamination of the local environment. PeerJ 2018, 6, e5755. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Hirt, H.; Zurek, L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microb. Ecol. 2009, 58, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Usui, M.; Shirakawa, T.; Fukuda, A.; Tamura, Y. The Role of Flies in Disseminating Plasmids with Antimicrobial-Resistance Genes between Farms. Microb. Drug Resist. 2015, 21, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.; Usui, M.; Okubo, T.; Tamura, Y. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica). Microb. Drug Resist. 2016, 22, 336–341. [Google Scholar] [CrossRef]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef]
- Förster, M. Synanthrope Fliegen als Träger und Potenzielle Vektoren von Pathogenen Mikroorganismen und Parasiten. Ph.D. Thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, 2011. [Google Scholar]
- Forster, M.; Sievert, K.; Messler, S.; Klimpel, S.; Pfeffer, K. Comprehensive study on the occurrence and distribution of pathogenic microorganisms carried by synanthropic flies caught at different rural locations in Germany. J. Med. Entomol. 2009, 46, 1164–1166. [Google Scholar] [CrossRef]
- Junqueira, A.C.M.; Ratan, A.; Acerbi, E.; Drautz-Moses, D.I.; Premkrishnan, B.N.V.; Costea, P.I.; Linz, B.; Purbojati, R.W.; Paulo, D.F.; Gaultier, N.E.; et al. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci. Rep. 2017, 7, 16324. [Google Scholar] [CrossRef]
- Usui, M.; Iwasa, T.; Fukuda, A.; Sato, T.; Okubo, T.; Tamura, Y. The role of flies in spreading the extended-spectrum beta-lactamase gene from cattle. Microb. Drug Resist. 2013, 19, 415–420. [Google Scholar] [CrossRef]
- Blaak, H.; Hamidjaja, R.A.; van Hoek, A.H.; de Heer, L.; de Roda Husman, A.M.; Schets, F.M. Detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli on flies at poultry farms. Appl. Environ. Microbiol. 2014, 80, 239–246. [Google Scholar] [CrossRef]
- Beresford, D.V.; Sutcliffe, J.F. Evidence for Sticky-Trap Avoidance by Stable Fly, Stomoxys calcitrans (Diptera: Muscidae), in Response to Trapped Flies. J. Am. Mosq. Control Assoc. 2017, 33, 250–252. [Google Scholar] [CrossRef]
- Pava-Ripoll, M.; Pearson, R.E.; Miller, A.K.; Ziobro, G.C. Detection of foodborne bacterial pathogens from individual filth flies. J. Vis. Exp. 2015, e52372. [Google Scholar] [CrossRef]
- McGuire, C.D.; Durant, R.C. The role of flies in the transmission of eye disease in Egypt. Am. J. Trop. Med. Hyg. 1957, 6, 569–575. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasaki, T.; Saito, N.; Tamura, K.; Suzuki, K.; Watanabe, H.; Agui, N. Houseflies: Not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. Am. J. Trop. Med. Hyg. 1999, 61, 625–629. [Google Scholar] [CrossRef]
- Forster, M.; Klimpel, S.; Mehlhorn, H.; Sievert, K.; Messler, S.; Pfeffer, K. Pilot study on synanthropic flies (e.g., Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol. Res. 2007, 101, 243–246. [Google Scholar] [CrossRef]
- Pava-Ripoll, M.; Pearson, R.E.; Miller, A.K.; Ziobro, G.C. Prevalence and relative risk of Cronobacter spp.; Salmonella spp.; and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl. Environ. Microbiol. 2012, 78, 7891–7902. [Google Scholar] [CrossRef]
- Wang, L. Echerichia coli Biofilm Formation in Musca Domestica Crops. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2016. [Google Scholar]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Johnson, J.R.; Clermont, O.; Johnston, B.; Clabots, C.; Tchesnokova, V.; Sokurenko, E.; Junka, A.F.; Maczynska, B.; Denamur, E. Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J. Clin. Microbiol. 2014, 52, 1358–1365. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar]
- Barton, B.M.; Harding, G.P.; Zuccarelli, A.J. A general method for detecting and sizing large plasmids. Anal. Biochem. 1995, 226, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B. Flies and Disease. Sci. Am. 1965, 213, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Rahuma, N.; Ghenghesh, K.S.; Ben Aissa, R.; Elamaari, A. Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann. Trop. Med. Parasitol. 2005, 99, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Jones, S.H.; Edwards, C.; Ellis, J.C. Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. Dis. Aquat. Organ. 2008, 81, 53–63. [Google Scholar] [CrossRef]
- Guenther, S.; Wuttke, J.; Bethe, A.; Vojtech, J.; Schaufler, K.; Semmler, T.; Ulrich, R.G.; Wieler, L.H.; Ewers, C. Is fecal carriage of extended-spectrum-beta-lactamase-producing Escherichia coli in urban rats a risk for public health? Antimicrob. Agents Chemother. 2013, 57, 2424–2425. [Google Scholar] [CrossRef]
- Zurek, L.; Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [CrossRef] [PubMed]
- Himsworth, C.G.; Zabek, E.; Desruisseau, A.; Parmley, E.J.; Reid-Smith, R.; Jardine, C.M.; Tang, P.; Patrick, D.M. Prevalence and Characteristics of Escherichia Coli and Salmonella Spp. In the Feces of Wild Urban Norway and Black Rats (Rattus Norvegicus and Rattus Rattus) from an Inner-City Neighborhood of Vancouver, Canada. J. Wildl. Dis. 2015, 51, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Onwugamba, F.C.; Akulenko, R.; Peters, G.; Mellmann, A.; Kock, R.; Becker, K. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol. 2016, 306, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Hagel, S.; Makarewicz, O.; Hartung, A.; Weiss, D.; Stein, C.; Brandt, C.; Schumacher, U.; Ehricht, R.; Patchev, V.; Pletz, M.W. ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes. PLoS ONE 2019, 14, e0208505. [Google Scholar] [CrossRef]
- Hille, K.; Felski, M.; Ruddat, I.; Woydt, J.; Schmid, A.; Friese, A.; Fischer, J.; Sharp, H.; Valentin, L.; Michael, G.B.; et al. Association of farm-related factors with characteristics profiles of extended-spectrum beta-lactamase-/plasmid-mediated AmpC beta-lactamase-producing Escherichia coli isolates from German livestock farms. Vet. Microbiol. 2018, 223, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.; Nickel, S.; Schmiedel, J.; Falgenhauer, L.; et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, L.; Bogaerts, P.; Glupczynski, Y.; Vercammen, F. High prevalence of beta-lactamase-producing Enterobacteriaceae: Also in captivity animals from zoological gardens in Belgium. In Proceedings of the 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID 2016), Amsterdam, The Netherlands, 9–12 April 2016. [Google Scholar]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef]
- Pietsch, M.; Eller, C.; Wendt, C.; Holfelder, M.; Falgenhauer, L.; Fruth, A.; Grossl, T.; Leistner, R.; Valenza, G.; Werner, G.; et al. Molecular characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet. Microbiol. 2017, 200, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Galler, H.; Feierl, G.; Haas, D.; Kittinger, C.; Leitner, E.; Grisold, A.J.; Mascher, F.; Posch, J.; Pertschy, B.; et al. Comparison of extended-spectrum-beta-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection. Environ. Pollut. 2013, 173, 192–199. [Google Scholar] [CrossRef]
- Newton, R.J.; McLellan, S.L.; Dila, D.K.; Vineis, J.H.; Morrison, H.G.; Eren, A.M.; Sogin, M.L. Sewage reflects the microbiomes of human populations. MBio 2015, 6, e02574. [Google Scholar] [CrossRef]
- Drieux, L.; Haenn, S.; Moulin, L.; Jarlier, V. Quantitative evaluation of extended-spectrum beta-lactamase-producing Escherichia coli strains in the wastewater of a French teaching hospital and relation to patient strain. Antimicrob. Resist. Infect. Control 2016, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Xu, Y.B.; He, X.L.; Huang, L.; Ling, J.Y.; Zheng, L.; Du, Q.P. Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ. Pollut. 2016, 218, 1255–1261. [Google Scholar] [CrossRef]
- Conte, D.; Palmeiro, J.K.; da Silva Nogueira, K.; de Lima, T.M.; Cardoso, M.A.; Pontarolo, R.; Degaut Pontes, F.L.; Dalla-Costa, L.M. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol. Environ. Saf. 2017, 136, 62–69. [Google Scholar] [CrossRef]
- Colomer-Lluch, M.; Jofre, J.; Muniesa, M. Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. J. Antimicrob. Chemother. 2014, 69, 1265–1274. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Boehmer, T.; Vogler, A.J.; Thomas, A.; Sauer, S.; Hergenroether, M.; Straubinger, R.K.; Birdsell, D.; Keim, P.; Sahl, J.W.; Williamson, C.H.D.; et al. Phenotypic characterization and whole genome analysis of extended-spectrum beta-lactamase-producing bacteria isolated from dogs in Germany. PLoS ONE 2018, 13, e0206252. [Google Scholar] [CrossRef]
Site | n | ESBL-Positive | % | CI * |
---|---|---|---|---|
H | 45 | 6 | 13.3 | 6.3–26.2 |
Z | 50 | 7 | 14.0 | 7.0–26.2 |
RA | 26 | 0 | 0 | 0–12.9 |
RB | 42 | 8 | 19.1 | 10.0–33.3 |
total | 163 | 21 | 12.9 | 8.6–18.9 |
Sample No. and Site | Isolate No. | ESBL | Other β-Lactamases | PMQR Genes | Phylogenetic Group | PFGE Type (Clone) | Plasmid Size * |
---|---|---|---|---|---|---|---|
20 H | 752/17 | CTX-M-1 | - | - | A | E1 | 80 kb |
31 H | 753/17 | SHV-12 | - | qnrS1 | A | E2 | 35 kb |
32 H | 754/17 | CTX-M-1 | TEM | - | A | E3 | 160 kb |
48 H | 755/17 | SHV-12 | - | qnrS1 | A | E2 | 35 kb |
52 H | 756/17 | CTX-M-15 | - | - | B1 | E4 | n.t. |
55 H | 757/17 | CTX-M-15 | - | - | B1 | E4 | n.t. |
61 Z | 758/17 | CTX-M-1 | - | - | A | E5 | 90 kb |
62 Z | 759/17 | CTX-M-3 | - | - | D | E6 | 80 kb |
69 Z | 760/17 | CTX-M-14 | - | - | D | E7 | n.t. |
71 Z | 761/17 | CTX-M-14 | - | - | D | E7 | n.t. |
73 Z | 762/17 | CTX-M-1 | - | - | A | E8 | n.t. |
79 Z | 763/17 | CTX-M-1 | - | - | D | E9 | 105 kb |
84 Z | 764/17 | CTX-M-15 | - | - | D | E10 | n.t. |
122 RB | 765/17 | CTX-M-15 | TEM | qnrS1 | A | E11 | n.t. |
146 RB | 766/17 | CTX-M-1 | TEM | qnrS1 | D | E12 | n.t. |
153 RB | 767/17 | CTX-M-1 | TEM, LAP | qnrS1 | A | E13 | n.t. |
157 RB | 768/17 | CTX-M-1 | LAP | qnrS1 | A | E14 | 50 kb |
157 RB | 769/17 | CTX-M-1 | LAP | qnrS1 | A | E14 | 50 kb |
160 RB | 770/17 | CTX-M-1 | TEM | qnrS1 | A | E13 | n.t. |
163 RB | 771/17 | CTX-M-1 | LAP | qnrS1 | A | E14 | 50 kb |
163 RB | 772/17 | CTX-M-1 | TEM | qnrS1 | D | E12 | n.t. |
165 RB | 773/17 | CTX-M-1 | LAP | qnrS1 | A | E14 | 50 kb |
165 RB | 774/17 | CTX-M-1 | TEM | qnrS1 | D | E12 | n.t. |
166 RB | 775/17 | CTX-M-1 | LAP | qnrS1 | A | E14 | 50 kb |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetzker, W.; Pfeifer, Y.; Wolke, S.; Haselbeck, A.; Leistner, R.; Kola, A.; Gastmeier, P.; Salm, F. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany. Int. J. Environ. Res. Public Health 2019, 16, 1530. https://doi.org/10.3390/ijerph16091530
Wetzker W, Pfeifer Y, Wolke S, Haselbeck A, Leistner R, Kola A, Gastmeier P, Salm F. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany. International Journal of Environmental Research and Public Health. 2019; 16(9):1530. https://doi.org/10.3390/ijerph16091530
Chicago/Turabian StyleWetzker, Wibke, Yvonne Pfeifer, Solvy Wolke, Andrea Haselbeck, Rasmus Leistner, Axel Kola, Petra Gastmeier, and Florian Salm. 2019. "Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany" International Journal of Environmental Research and Public Health 16, no. 9: 1530. https://doi.org/10.3390/ijerph16091530
APA StyleWetzker, W., Pfeifer, Y., Wolke, S., Haselbeck, A., Leistner, R., Kola, A., Gastmeier, P., & Salm, F. (2019). Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany. International Journal of Environmental Research and Public Health, 16(9), 1530. https://doi.org/10.3390/ijerph16091530