Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017
Abstract
1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Outcome Measurement Methodology
2.3. Bacterial Isolates
2.4. Process Improvement Indicators
- Hospital admission rules for shortening the pre-operative stay and optimal patient preparation for surgery to limit emergency surgery; preparation of the surgical team, including
- diagnostics and qualification for surgery as far as possible in an outpatient procedure without prior hospitalization before surgery,
- pre-operative screening at a preoperative assessment clinic and the decolonization of methicillin-resistant Staphylococcus aureus (MRSA) in elective procedures.
- Perioperative procedures for patient preparation for surgery, including
- hair removal: cutting instead of shaving,
- bathing immediately prior to surgery,
- changing bed linens and patient’s clothing immediately before surgery.
- Work organization of the operating block, including
- preoperative checklist,
- surgical hand hygiene according to WHO guidelines,
- preparation of the operating field and surgical drape,
- application of antiseptic to the edges of the wound before sewing it.
- Patient care during the postoperative period:
- the five moments for hand hygiene,
- post-operative dressing and wound control.
- Active surveillance of all forms of HAIs:
- systematic collection, analysis, and interpretation of data for evaluation of practices,
- yearly feedback on the epidemiology and microbiology of HAIs,
- regular feedback on compliance with the procedures described above and hand hygiene.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ASA score | American Society of Anesthesiologists system for assessing the fitness of patients before surgery |
| BSI | bloodstream infection |
| CI | confidence interval |
| CRAN | craniotomy |
| ECDC | European Centre for Disease Prevention and Control |
| FUSN | spinal implant surgery |
| HAIs | healthcare-associated infections |
| ICT | Infection Control Team |
| LAM | laminectomy |
| OR | odds ratio |
| PN | pneumonia |
| SSIs | surgical site infections |
| VAP | ventilator-associated pneumonia |
| VP shunt | ventricular shunt implantation surgery |
References
- WHO. Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. Available online: https://www.who.int/gpsc/core-components.pdf (accessed on 23 February 2019).
- European Center for Disease Prevention and Control. Healthcare-Associated Infections Surveillance Network (HAI-Net). Available online: https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/hai-net (accessed on 23 February 2019).
- Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Hospital-Wide Surveillance of Healthcare-Associated Infections as a Source of Information about Specific Hospital Needs. A 5-Year Observation in a Multiprofile Provincial Hospital in the South of Poland. Int. J. Environ. Res. Public Health 2018, 15, 1956. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Mohapatra, S.; Rath, G.P.; Kapil, A. Active Surveillance of Health Care Associated Infections in Neurosurgical Patients. J. Clin. Diagn. Res. 2017, 11, DC01–DC04. [Google Scholar] [CrossRef] [PubMed]
- Göçmez, C.; Celik, F.; Tekin, R.; Kamaşak, K.; Turan, Y.; Palancı, Y.; Bozkurt, F.; Bozkurt, M. Evaluation of risk factors affecting hospital-acquired infections in the neurosurgery intensive care unit. Int. J. Neurosci. 2014, 124, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Dettenkofer, M.; Ebner, W.; Hans, F.J.; Forster, D.; Babikir, R.; Zentner, J.; Pelz, K.; Daschner, F.D. Nosocomial infections in a neurosurgery intensive care unit. Acta Neurochir. 1999, 141, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, M. The analysis of the occurrence of nosocomial infections in the neurosurgical ward in the District Hospital from 2003–2012. Przegl. Epidemiol. 2015, 69, 507–514. [Google Scholar]
- Emori, T.G.; Culver, D.H.; Horan, T.C.; Jarvis, W.R.; White, J.W.; Olson, D.R.; Banerjee, S.; Edwards, J.R.; Martone, W.J.; Gaynes, R.P.; et al. National nosocomial infections surveillance system (NNIS): Description of surveillance methods. Am. J. infect. Control 1991, 19, 19–35. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals—Protocol Version 4.3; ECDC: Stockholm, Sweden, 2012.
- European Centre for Disease Prevention and Control. European Surveillance of Healthcare Associated Infections in Intensive Care Units—HAI-Net ICU Protocol, Version 1.02; ECDC: Stockholm, Sweden, 2015. Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-HAI-ICU-protocol.pdf (accessed on 24 February 2019).
- Hover, A.R.; Sistrunk, W.W.; Cavagnol, R.M.; Scarrow, A.; Finley, P.J.; Kroencke, A.D.; Walker, J.L. Effectiveness and Cost of Failure Mode and Effects Analysis Methodology to Reduce Neurosurgical Site Infections. Am. J. Med. Qual. 2014, 29, 517–521. [Google Scholar] [CrossRef]
- Kim, T.; Han, J.H.; Kim, H.B.; Song, K.H.; Kim, E.S.; Kim, Y.H.; Bang, J.S.; Kim, C.Y.; Oh, C.W. Risk factors of surgical site infections after supratentorial elective surgery: A focus on the efficacy of the wound-drain-tip culture. Acta Neurochir. 2013, 155, 2165–2170. [Google Scholar] [CrossRef]
- Orsi, G.B.; Scorzolini, L.; Franchi, C.; Mondillo, V.; Rosa, G.; Venditti, M. Hospital-acquired infection surveillance in a neurosurgical intensive care unit. J. Hosp. Infect. 2006, 64, 23–29. [Google Scholar] [CrossRef]
- Lazennec, J.Y.; Fourniols, E.; Lenoir, T.; Aubry, A.; Pissonnier, M.L.; Issartel, B.; Rousseau, M.-A.; French Spine Surgery Society. Infections in the operated spine: Update on risk management and therapeutic strategies. Orthop. Traumatol. Surg. Res. 2011, 97 (Suppl. 6), 107–116. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Shaffrey, C.I.; Sansur, C.A.; Berven, S.H.; Fu, K.G.; Broadstone, P.A. Rates of infection after spine surgery based on 108,419 procedures. Spine 2011, 36, 556–563. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Surveillance of Surgical Site Infections in Europe, 2008–2009; ECDC: Stockholm, Sweden, 2012. Available online: http://www.ecdc.europa.eu/en/publications/Publications/120215_SUR_SSI_2008-2009.pdf (accessed on 11 February 2018).
- Edwards, J.R.; Peterson, K.D.; Mu, Y.; Banerjee, S.; Allen-Bridson, K.; Morrell, G.; Dudeck, M.A.; Pollock, D.A.; Horan, T.C. National Healthcare Safety Network (NHSN) report: Data summary for 2006 through 2008, issued December 2009. Am. J. Infect. Control 2009, 37, 783–805. [Google Scholar] [CrossRef] [PubMed]
- National Nosocomial Infections Surveillance (NNIS). System Report, Data Summary from January 1992 through June 2004, Issued October 2004. Available online: https://www.cdc.gov/nhsn/pdfs/datastat/nnis_2004.pdf. (accessed on 24 February 2019).
- Rechtine, G.R.; Bono, P.L.; Cahill, D.; Bolesta, M.J.; Chrin, A.M. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J. Orthop. Trauma 2001, 15, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.J.; Berbari, E.F.; Huddleston, P.M.; Steckelberg, J.M.; Mandrekar, J.N.; Osmon, D.R. The management and outcome of spinal implant infections: Contemporary retrospective cohort study. Clin. Infect. Dis. 2007, 44, 913–920. [Google Scholar] [CrossRef]
- Zhan, R.; Zhu, Y.; Shen Tong, Y.; Yu, H.; Wen, L. Post-operative central nervous system infections after cranial surgery in China: Incidence, causative agents, and risk factors in 1470 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 11, 123–185. [Google Scholar]
- Rosenthal, V.D.; Richtmann, R.; Singh, S.; Apisarnthanarak, A.; Kübler, A.; Viet-Hung, N.; Ramírez-Wong, F.M.; Portillo-Gallo, J.H.; Toscani, J.; Gikas, A.; et al. Surgical site infections, International Nosocomial Infection Control Consortium (INICC) report, data summary of 30 countries, 2005–2010. Infect. Control Hosp. Epidemiol. 2013, 34, 597–604. [Google Scholar] [CrossRef]
- Schimmel, J.J.; Horsting, P.P.; de Kleuver, M.; Wonders, G.; van Limbeek, J. Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 2010, 19, 1711–1719. [Google Scholar] [CrossRef]
- Bekelis, K.; Coy, S.; Simmons, N. Operative Duration and Risk of Surgical Site Infection in Neurosurgery. World Neurosurg. 2016, 94, 551.e6–555.e6. [Google Scholar] [CrossRef]
- Golebiowski, A.; Drewes, C.; Gulati, S.; Jakola, A.S.; Solheim, O. Is duration of surgery a risk factor for extracranial complications and surgical site infections after intracranial tumor operations? Acta Neurochir. 2015, 157, 235–240. [Google Scholar] [CrossRef]
- Cheng, H.; Clymer, J.W.; Chen, B.P.; Sadeghirad, B.; Ferko, N.C.; Cameron, C.G.; Hinoul, P. Prolonged operative duration is associated with complications: A systematic review and meta-analysis. J. Surg. Res. 2018, 229, 134–144. [Google Scholar] [CrossRef]
- McCutcheon, B.A.; Ubl, D.S.; Babu, M.; Maloney, P.; Murphy, M.; Kerezoudis, P.; Bydon, M.; Habermann, E.B.; Parney, I. Predictors of Surgical Site Infection Following Craniotomy for Intracranial Neoplasms: An Analysis of Prospectively Collected Data in the American College of Surgeons National Surgical Quality Improvement Program Database. World Neurosurg. 2016, 88, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhu, T.; Zhang, P.; Xia, L.; Sun, C. Risk factors of neurosurgical site infection after craniotomy: A systematic review and meta-analysis. Am. J. Infect. Control 2017, 45, e123–e134. [Google Scholar] [CrossRef]
- Dubiel, G.; Rogoziński, P.; Żaloudik, E.; Bruliński, K.; Różańska, A.; Wójkowska-Mach, J. Identifying the Infection Control Areas Requiring Modifications in Thoracic Surgery Units: Results of a Two-Year Surveillance of Surgical Site Infections in Hospitals in Southern Poland. Surg. Infect. 2017, 18, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, M.; Różańska, A.; Bulanda, M.; Wojkowska-Mach, J. Polish Society of Hospital Infections Team. Alarming results of nosocomial bloodstream infections surveillance in Polish intensive care units. Przegl. Epidemiol. 2018, 72, 33–44. [Google Scholar] [PubMed]
- Wałaszek, M.; Różańska, A.; Wałaszek, M.Z.; Wójkowska-Mach, J.; Polish Society of Hospital Infections Team. Epidemiology of Ventilator-Associated Pneumonia, microbiological diagnostics and the length of antimicrobial treatment in the Polish Intensive Care Units in the years 2013–2015. BMC Infect. Dis. 2018, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- European Center for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2013. Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf (accessed on 23 February 2019).
- Messina, G.; Rosadini, D.; Burgassi, S.; Messina, D.; Nante, N.; Tani, M.; Cevenni, G. Tanning the bugs—A pilot study of an innovative approach to stethoscope disinfection. J. Hosp. Infect. 2017, 95, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Song, C.; Zhang, B.; Liu, Z.; Chai, J.; Luo, Y.; Wu, H. Hospital-wide comparison of health care-associated infection among 8 intensive care units: A retrospective analysis for 2010–2015. Am. J. Infect. Control 2017, 45, e7–e13. [Google Scholar] [CrossRef]
- Pawłowska, I.; Ziółkowski, G.; Bielecki, T.; Wojkowska-Mach, J. Can surgical site infections be controlled through microbiological surveillance? A 3-year laboratory-based surveillance of an orthopaedic unit, retrospective observational study. Int. Orthop. 2019, 24. [Google Scholar] [CrossRef] [PubMed]
| Code | Operative Procedure | ICD-9 |
|---|---|---|
| LAM | Laminectomy: exploration or decompression of spinal cord through excision or incision into vertebral structures | 03.01; 03.02; 03.09; 80.50; 80.5; 80.53; 80.54; 80.59; 84.60–84.69; 84.80–84.85. |
| FUSN | Spinal implant surgery: spinal fusion, Immobilization of spinal column | 81.00–81.08 |
| CRAN | Craniotomy: incision through the skull to excise, repair, or explore the brain; does not include taps or punctures | 01.12; 01.14; 01.20–01.25; 01.28; 01.29; 01.31; 01.32; 01.39; 01.41; 01.42; 01.51–01.53; 01.59; 02.11–02.14; 02.91–02.93; 07.51–07.54; 07.59; 07.61–07.65; 07.68; 07.69; 07.71; 07.72; 07.79; 38.01; 38.11; 38.31; 38.41; 38.51; 38.61; 38,81; 39.28. |
| VP Shunt | VP shunt: ventricular shunt operations, including revision and removal of shunt | 02.21; 02.22; 02.31–02.35; 02.39; 02.42; 02.43; 54.95. |
| Surgery Type (N = 10,332) | LAM (n = 4571) | FUSN (n = 2397) | CRAN (n = 2950) | VP Shunt (n = 414) | Incidence | Share in the Total Pool of HAIs (%) | |
|---|---|---|---|---|---|---|---|
| All HAIs (n = 476) | 66 | 98 | 235 | 77 | |||
| HAI Incidence (%) | 1.4 | 4.1 | 8.0 | 18.6 | 4.6 | ||
| Surgical site infection (n = 157) | SSI incidence (%) | 33.0 | |||||
| 0.6 | 2.2 | 1.9 | 5.1 | 1.52 | |||
| superficial incisional (n = 56) | 11 | 21 | 22 | 2 | 0.54 | ||
| deep incisional (n = 90) | 16 | 31 | 30 | 13 | 0.87 | ||
| organ/space (n = 11) | 0 | 0 | 5 | 6 | 0.11 | ||
| Pneumonia (PN) (n = 118) | PN incidence (%) | 24.8 | |||||
| 0.1 | 0.4 | 2.7 | 5.6 | 1.14 | |||
| PN1 (n = 2) | 0 | 0 | 2 | 0 | 0.02 | ||
| PN2 (n = 8) | 2 | 0 | 1 | 5 | 0.08 | ||
| PN3 (n = 0) | 0 | 0 | 0 | 0 | 0.00 | ||
| PN4 (n = 70) | 4 | 6 | 46 | 14 | 0.68 | ||
| PN5 (n = 38) | 0 | 3 | 31 | 4 | 0.37 | ||
| Bloodstream infections (BSI) (n = 97) | BSI incidence (%) | 20.4 | |||||
| 0.2 | 0.8 | 1.8 | 4.1 | 0.94 | |||
| BSI: catheter related (n = 23) | 0 | 1 | 17 | 5 | 0.22 | ||
| BSI: unknown origin (n = 44) | 5 | 14 | 18 | 7 | 0.43 | ||
| sepsis (n = 3) | 0 | 0 | 3 | 0 | 0.03 | ||
| BSI: secondary (n = 27) | 4 | 3 | 15 | 5 | 0.26 | ||
| Urinary tract infection (n = 63) | UTI incidence (%) | 13.2 | |||||
| 0.3 | 0.3 | 0.9 | 3.1 | 0.61 | |||
| microbiologically confirmed | yes (n = 54) | 8 | 6 | 27 | 13 | 0.52 | |
| no (n = 9) | 6 | 2 | 1 | 0 | 0.09 | ||
| Gastrointestinal (n = 33) | GI incidence (%) | 6.9 | |||||
| 0.2 | 0.4 | 0.4 | 0.7 | 0.32 | |||
| Clostridium difficile infection (n = 9) | 2 | 1 | 4 | 2 | 0.09 | ||
| Gastroenteritis (n = 24) | 6 | 8 | 9 | 1 | 0.23 | ||
| Skin and soft tissue infection (n = 8) | SST incidence (%) | 1.7 | |||||
| 0.0 | 0.0 | 0.1 | 0.0 | 0.08 | |||
| skin infection (n = 8) | 2 | 2 | 4 | 0 | 0.08 | ||
| Surgery Type | Spinal Surgery | Brain Surgery | ||||||
|---|---|---|---|---|---|---|---|---|
| LAM | FUSN | CRAN | VP Shunt | |||||
| Phase of the Study | Before | After | Before | After | Before | After | Before | After |
| surgeries, no. | 133 | 504 | 34 | 252 | 99 | 240 | 13 | 27 |
| HAI, no. | 6 | 4 | 4 | 2 | 10 | 1 | 3 | 3 |
| HAI incidence (%) | 4.5 | 0.8 | 11.8 | 0.8 | 10.1 | 0.4 | 23.1 | 11.1 |
| RR 95%CI, Fisher’s exact test (p) | 5.5, 1.57–19.16, p = 0.01 | 13.4, 2.53–70.51, p < 0.001 | 25.3, 2.87–170.58, p < 0.001 | 2.1, 0.43–8.24, p = 0.648 | ||||
| Patient age (years) | ||||||||
| Mean (SD) | 48 (13.8) | 52 (14.5) | 52 (13.1) | 51 (14.5) | 56 (16.9) | 61 (16.4) | 57 (14.7) | 54 (20.4) |
| ANOVA (p) | p = 0.005 | p = 0.647 | p = 0.031 | p = 0.611 | ||||
| Hospitalization duration prior to surgery (days) | ||||||||
| Mean (SD) | 6 (5.041) | 3 (2.696) | 8 (6.569) | 4 (4.022) | 4 (5.9) | 3 (4.8) | 9 (9.8) | 9 (12.6) |
| ANOVA (p) | p < 0.001 | p < 0.001 | p = 0.150 | p = 0.857 | ||||
| Hospitalization duration (days) | ||||||||
| Mean (SD) | 13 (8.3) | 9 (5.4) | 20 (21.5) | 11 (12.1) | 14 (13.8) | 13 (10.8) | 19 (14.9) | 20 (22.2) |
| ANOVA (p) | p < 0.001 | p < 0.001 | p = 0.406 | p = 0.885 | ||||
| Surgery duration (minutes) | ||||||||
| \Mean (SD) | 127 (55.5) | 116 (55.6) | 135 (39.6) | 141 (65.7) | 110 (46.3) | 88 (56.4) | 80 (21.7) | 65 (31.1) |
| ANOVA (p) | p = 0.043 | p = 0.027 | p = 0.001 | p = 0.043 | ||||
| Sex | ||||||||
| Men | 85 (63.9%) | 280 (55.6%) | 17 (50.0%) | 138 (54.8%) | 66 (66.7%) | 147 (61.2%) | 8 (61.5%) | 16 (59.3%) |
| Women | 48 (36.1%) | 224 (44.4%) | 17 (50.0%) | 114 (45.2%) | 33 (33.3%) | 93 (38.8%) | 5 (38.5%) | 11 (40.7%) |
| Fisher’s exact test (p) | p = 0.051 | p = 0.366 | p = 0.208 | p = 0.585 | ||||
| Operation mode | ||||||||
| Planned | 132 (99.2%) | 471 (93.5%) | 34 (100.0%) | 234 (92.9%) | 23 (23.2%) | 107 (44.6%) | 13 (100.0%) | 21 (77.8%) |
| Urgent | 1 (0.8%) | 33 (6.5%) | 0 (0.0%) | 18 (7.1%) | 76 (76.8%) | 133 (55.4%) | 0 (0.0%) | 6 (22.2%) |
| Fisher’s exact test (p) | p = 0.003 | p = 0.095 | p < 0.001 | p = 0.077 | ||||
| Patient condition according to the ASA score | ||||||||
| ASA 1–2 pts | 61 (45.9%) | 159 (31.5%) | 16 (47.1%) | 88 (34.9%) | 20 (20.2%) | 23 (9.7%) | 1 (7.7%) | 1 (3.7%) |
| ASA 3–5 pts | 72 (54.1%) | 345 (68.5%) | 18 (52.9%) | 164 (65.1%) | 79 (79.8%) | 215 (90.3%) | 12 (92.3%) | 26 (96.3%) |
| Fisher’s exact test (p) | p < 0.001 | p = 0.008 | p < 0.001 | p = 0.978 | ||||
| Microorganism | BSI | GI | PN | SSI | SST | UTI | Total |
|---|---|---|---|---|---|---|---|
| n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
| Gram-positive cocci | |||||||
| Staphylococcus aureus | 24 (24.7) | 0 (0.0%) | 13 (11.0) | 78 (49.7) | 4 (50.0) | 1 (1.6) | 120 (25.2) |
| Coagulase-negative staphylococci | 28 (28.9) | 0 (0.0%) | 0 (0.0%) | 5 (3.2) | 1 (12.5) | 34 (7.1) | |
| Streptococcus spp. | 0 (0.0%) | 0 (0.0%) | 5 (4.2) | 3 (1.9) | 0 (0.0%) | 9 (14.3) | 17 (3.6) |
| Enterobacteriaceae | |||||||
| Escherichia coli | 10 (10.3) | 0 (0.0%) | 5 (4.2) | 9 (5.7) | 0 (0.0%) | 19 (30.2) | 43 (9.0) |
| Klebsiella spp. | 7 (7.2) | 0 (0.0%) | 13 (11.0) | 2 (1.3) | 0 (0.0%) | 7 (11.1) | 29 (6.1) |
| Enterobacter spp. | 7 (7.2) | 0 (0.0%) | 5 (4.2) | 18 (11.5) | 1 (12.5) | 1 (1.6) | 32 (6.7) |
| Proteus spp. | 2 (2.1) | 0 (0.0%) | 7 (5.9) | 0 (0.0%) | 0 (0.0%) | 5 (7.9) | 14 (2.9) |
| Serratia spp. | 3 (3.1) | 0 (0.0%) | 0 (0.0%) | 2 (1.3) | 0 (0.0%) | 5 (1.1) | |
| Non-fermenting Gram-negative bacteria | |||||||
| Acinetobacter baumannii | 11 (11.3) | 0 (0.0%) | 26 (22.0) | 24 (15.3) | 1 (12.5) | 4 (6.3) | 66 (13.9) |
| Pseudomonas aeruginosa | 0 (0.0%) | 0 (0.0%) | 6 (5.1) | 7 (4.5) | 1 (12.5) | 6 (9.5) | 20 (4.2) |
| Morganella morganii | 0 (0.0%) | 0 (0.0%) | 3 (2.5) | 1 (0.6) | 0 (0.0%) | 1 (1.6) | 5 (1.1) |
| Others | |||||||
| Clostridium difficile | 0 (0.0%) | 9 (27.3) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 9 (1.9) |
| Candida spp. | 2 (2.1) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 8 (12.7) | 10 (2.1) |
| Non-microbiologically-confirmed | 3 (3.1) | 24 (72.7) | 35 (29.7) | 8 (5.1) | 0 (0.0%) | 2 (3.2) | 72 (15.1) |
| Total | 97 (100) | 33 (100) | 118 (100) | 157 (100) | 8 (100) | 63 (100) | 476 (100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. Int. J. Environ. Res. Public Health 2019, 16, 911. https://doi.org/10.3390/ijerph16060911
Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. International Journal of Environmental Research and Public Health. 2019; 16(6):911. https://doi.org/10.3390/ijerph16060911
Chicago/Turabian StyleKołpa, Małgorzata, Marta Wałaszek, Anna Różańska, Zdzisław Wolak, and Jadwiga Wójkowska-Mach. 2019. "Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017" International Journal of Environmental Research and Public Health 16, no. 6: 911. https://doi.org/10.3390/ijerph16060911
APA StyleKołpa, M., Wałaszek, M., Różańska, A., Wolak, Z., & Wójkowska-Mach, J. (2019). Epidemiology of Surgical Site Infections and Non-Surgical Infections in Neurosurgical Polish Patients—Substantial Changes in 2003–2017. International Journal of Environmental Research and Public Health, 16(6), 911. https://doi.org/10.3390/ijerph16060911

