# The Role of Vertical Transmission in the Control of Dengue Fever

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Two-Strain Dengue Model with Control

## 3. An Optimal Control Problem

## 4. Numerical Results

#### 4.1. The Impact of the Relative Cost on the Controlled Dengue Dynamics

#### 4.2. The Impact of Vertical Transmission on the Controlled Dengue Dynamics

#### 4.3. The Impact of Vertical Transmission on the Objective Function

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Existence of Optimal Control

- The set of controls and corresponding state variables is non-empty.
- The control set, $\Omega ,$ is convex and closed.
- The right hand side of system (2) is bounded by a linear function in the state and control.
- The integrand of the objective functional is convex and bounded below by ${c}_{1}(|{u}_{1}{|}^{2}+|{u}_{2}{{|}^{2})}^{\frac{\beta}{2}}-{c}_{2}$ and the Lipschitz condition is satisfied.
- The payoff function is continuous.

**Proof**

- If we consider the vector of state variables $\mathit{x}\phantom{\rule{0.222222em}{0ex}}=\phantom{\rule{0.222222em}{0ex}}{[S,\phantom{\rule{0.222222em}{0ex}}{D}_{Am},\phantom{\rule{0.222222em}{0ex}}{D}_{As},\phantom{\rule{0.222222em}{0ex}}H,\phantom{\rule{0.222222em}{0ex}}R,\phantom{\rule{0.222222em}{0ex}}V,\phantom{\rule{0.222222em}{0ex}}{W}_{Am},\phantom{\rule{0.222222em}{0ex}}{W}_{As}]}^{T}$, then we can write our system of equations as$$\dot{\mathbf{x}}\phantom{\rule{0.222222em}{0ex}}=\phantom{\rule{0.222222em}{0ex}}f(\mathbf{x},u).$$Since we know our state variables are bounded in the positive orthant, the particular form of our system of equations dictates that $f(\mathit{x},u)$ is bounded. Thus there exists a unique solution to our system given suitable initial conditions.
- By the construction of $\Omega $, this condition is clearly met.
- The total population for both the host and vector systems is constant, thus all solutions are bounded. The control function is also bounded, thus the right-hand side can be bounded by a linear function in the state and control.
- The integrand is linear in the state variable and quadratic in the control function, and thus clearly convex. Furthermore, the Lipschitz is condition is clearly satisfied as the integrand is bounded below since both the state and control are non-negative.
- The payoff function is clearly continuous by construction.

## References

- WHO. Dengue and Severe Dengue; Fact Sheet; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Harrington, L.C.; Scott, T.W.; Lerdthusnee, K.; Coleman, R.C.; Costero, A.; Clark, G.G.; Jones, J.J.; Kitthawee, S.; Kittayapong, P.; Sithiprasasna, R.; et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg.
**2005**, 72, 209. [Google Scholar] [CrossRef] [PubMed] - Gómez-Dantés, H.; Willoquet, J.R. Dengue in the Americas: Challenges for prevention and control. Cad. Saúde Púb.
**2009**, 25, 19–31. [Google Scholar] [CrossRef] - Farrar, J.; Focks, D.; Gubler, D.; Barrera, R.; Guzman, M.G.; Simmons, C.; Kalayanarooj, S.; Lum, L.; McCall, P.J.; Lloyd, L.; et al. Editorial: Towards a global dengue research agenda. Trop. Med. Int. Health
**2007**, 12, 695–699. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature
**2013**, 496, 504. [Google Scholar] [CrossRef] [PubMed] - WHO. Dengue Control: The Mosquito; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- UN. UN Lauds International Cooperation in Eradicating Deadly Cattle Plague; UN: New York, NY, USA, 2011. [Google Scholar]
- Anderson, R.; May, R. Vaccination and herd immunity to infectious diseases. Nature
**1985**, 318, 323–329. [Google Scholar] [CrossRef] [PubMed] - Reiter, P.; Gubler, D.J. Surveillance and control of urban dengue vectors. In Dengue and Dengue Hemorragic Fever; CAB International: New York, NY, USA, 1997; pp. 45–60. [Google Scholar]
- Amanna, I.; Slifka, M. Public fear of vaccination: Separating fact from fiction. Viral Immun.
**2005**, 18, 307–315. [Google Scholar] [CrossRef] [PubMed] - WHO. Dengue Vaccine Research; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Ceballos, G.; Ehrlich, P. Mammal population losses and the extinction crisis. Science
**2002**, 296, 904. [Google Scholar] [CrossRef] [PubMed] - Sodhi, N.; Brook, B.; Bradshaw, C. Causes and consequences of species extinctions. Princet. Guide Ecol.
**2009**, 1, 514–520. [Google Scholar] - Govindarajan, M.; Mathivanan, T.; Elumalai, K.; Krishnappa, K.; Anandan, A. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasit. Res.
**2011**, 109, 1–15. [Google Scholar] [CrossRef] [PubMed] - Koodalingam, A.; Mullainadhan, P.; Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop.
**2011**, 118, 27–36. [Google Scholar] [CrossRef] [PubMed] - Yakob, L.; Funk, S.; Camacho, A.; Brady, O.; Edmunds, W.J. Aedes aegypti control through modernized, integrated vector management. PLoS Curr.
**2017**, 9. [Google Scholar] [CrossRef] [PubMed] - Gubler, D.J.; Kuno, G. Dengue and Dengue Hemorrhagic Fever; CABI: Wallingford, UK, 1997. [Google Scholar]
- Goh, K. Dengue-a re-emerging infectious disease in Singapore. Dengue Singap.
**1998**, 26, 33–49. [Google Scholar] - Halstead, S.; Lan, N.; Myint, T.; Shwe, T.; Nisalak, A.; Kalyanarooj, S.; Nimmannitya, S.; Soegijanto, S.; Vaughn, D.; Endy, T. Dengue hemorrhagic fever in infants: Research opportunities ignored. Emerg. Infect. Dis.
**2002**, 8, 1474. [Google Scholar] [CrossRef] [PubMed] - Nguyen, H.; Nguyen, L.; Lei, H.; Lin, Y.; Lien, L.; Huang, K.; Lin, C.; Do, Q.; Vo, H.; Lam, M.; et al. Volume replacement in infants with dengue hemorrhagic fever/dengue shock syndrome. Am. J. Trop. Med. Hyg.
**2006**, 74, 684. [Google Scholar] [PubMed] - Joshi, V.; Mourya, D.; Sharma, R. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg.
**2002**, 67, 158. [Google Scholar] [CrossRef] [PubMed] - Adams, B.; Boots, M. How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics
**2010**, 2, 1–10. [Google Scholar] [CrossRef] [PubMed] - Haddow, A.D.; Guzman, H.; Popov, V.L.; Wood, T.G.; Widen, S.G.; Haddow, A.D.; Tesh, R.B.; Weaver, S.C. First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology
**2013**, 440, 134–139. [Google Scholar] [CrossRef] [PubMed] - Arunachalam, N.; Tewari, S.; Thenmozhi, V.; Rajendran, R.; Paramasivan, R.; Manavalan, R.; Ayanar, K.; Tyagi, B. Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India. Indian J. Med. Res.
**2008**, 127, 395–397. [Google Scholar] [PubMed] - Rosen, L.; Shroyer, D.; Tesh, R.; Freier, J.; Lien, J. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am. J. Trop. Med. Hyg.
**1983**, 32, 1108–1119. [Google Scholar] [CrossRef] [PubMed] - Bosio, C.; Thomas, R.; Grimstad, P.; Rai, K. Variation in the efficiency of vertical transmission of dengue-1 virus by strains of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol.
**1992**, 29, 985–989. [Google Scholar] [CrossRef] [PubMed] - Kow, C.; Koon, L.; Yin, P. Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by type-specific PCR. J. Med. Entomol.
**2001**, 38, 475–479. [Google Scholar] [CrossRef] [PubMed] - Gunther, J.; Martínez-Muñoz, J.; Pérez-Ishiwara, D.; Salas-Benito, J. Evidence of vertical transmission of dengue virus in two endemic localities in the state of Oaxaca, Mexico. Intervirology
**2007**, 50, 347–352. [Google Scholar] [CrossRef] [PubMed] - Vilela, A.; Figueiredo, L.; dos Santos, J.; Eiras, Á.; Bonjardim, C.; Ferreira, P.; Kroon, E. Dengue virus 3 genotype I in Aedes aegypti mosquitoes and eggs, Brazil, 2005–2006. Emerg. Infect. Dis.
**2010**, 16, 989–992. [Google Scholar] [CrossRef] [PubMed] - Khin, M.; Than, K. Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am. J. Trop. Med. Hyg.
**1983**, 32, 590. [Google Scholar] [CrossRef] [PubMed] - Ferreira-de Lima, V.H.; Lima-Camara, T.N. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review. Parasit. Vectors
**2018**, 11, 77. [Google Scholar] [CrossRef] [PubMed] - Ross, R. The Prevention of Malaria; Dutton: New York, NY, USA, 1910. [Google Scholar]
- Reiner, R.C., Jr.; Perkins, T.A.; Barker, C.M.; Niu, T.; Chaves, L.F.; Ellis, A.M.; George, D.B.; Le Menach, A.; Pulliam, J.R.; Bisanzio, D.; et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J. R. Soc. Interface
**2013**, 10, 20120921. [Google Scholar] [CrossRef] [PubMed] - Gubler, D.J. Dengue, urbanization and globalization: The unholy trinity of the 21st century. Trop. Med. Health
**2011**, 39, S3–S11. [Google Scholar] [CrossRef] [PubMed] - Nishiura, H. Mathematical and statistical analyses of the spread of dengue. Dengue Bull.
**2006**, 30, 51. [Google Scholar] - Andraud, M.; Hens, N.; Marais, C.; Beutels, P. Dynamic epidemiological models for dengue transmission: A systematic review of structural approaches. PLoS ONE
**2012**, 7, e49085. [Google Scholar] [CrossRef] [PubMed] - Esteva, L.; Vargas, C. Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math. Biosci.
**2000**, 167, 51–64. [Google Scholar] [CrossRef] - Murillo, D.; Holechek, S.A.; Murillo, A.L.; Sanchez, F.; Castillo-Chavez, C. Vertical transmission in a two-strain model of dengue fever. Let. Biomath.
**2014**, 1, 249–271. [Google Scholar] [CrossRef] - Akbar, M.; Agoes, R.; Djatie, T.; Kodyat, S. PCR detection of dengue transovarial transmissibility in Aedes aegypti in Bandung, Indonesia. Proc. ASEAN Congr. Trop. Med. Parasitol.
**2008**, 3, 84–89. [Google Scholar] - Armstrong, P.M.; Rico-Hesse, R. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am. J. Trop. Med. Hyg.
**2003**, 68, 539–544. [Google Scholar] [CrossRef] [PubMed] - Kochel, T.; Watts, D.; Halstead, S.; Hayes, C.; Espinoza, A.; Felices, V.; Caceda, R.; Bautista, C.; Montoya, Y.; Douglas, S.; et al. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet
**2002**, 360, 310–312. [Google Scholar] [CrossRef] - Montoya, Y.; Holechek, S.; Cáceres, O.; Palacios, A.; Burans, J.; Guevara, C.; Quintana, F.; Herrera, V.; Pozo, E.; Anaya, E.; et al. Circulation of dengue viruses in North-Western Peru, 2000–2001. Dengue Bull.
**2003**, 27, 52–62. [Google Scholar] - Rico-Hesse, R.; Harrison, L.; Salas, R.; Tovar, D.; Nisalak, A.; Ramos, C.; Boshell, J.; de Mesa, M.; Nogueira, R.; Rosa, A. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology
**1997**, 230, 244–251. [Google Scholar] [CrossRef] [PubMed] - Knowlton, K.; Solomon, G.; Rotkin-Ellman, M. Fever Pitch: Mosquito-Borne Dengue Fever Threat Spreading in the Americas; NRDC, Issue Paper, July 2009. Available online: http://www.nrdc.org/health/dengue/files/dengue.pdf (accessed on 1 February 2011).
- Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springer: Berlin, Germany, 2001. [Google Scholar]
- Lenhart, S.; Workman, J. Optimal Control Applied to Biological Models; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Pontryagin, L.; Boltyanskii, V.; Gamkrelidze, R.; Mishchenko, E. The Mathematical Theory of Optimal Control Processes; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Blayneh, K.; Cao, Y.; Kwon, H. Optimal control of vector-borne diseases: Treatment and prevention. Discret. Contin. Dyn. Syst.
**2009**, 11, 587–611. [Google Scholar] [CrossRef] [Green Version] - Lee, S.; Chowell, G.; Castillo-Chavez, C. Optimal control of influenza pandemics: The role of antiviral treatment and isolation. J. Theor. Biol.
**2010**, 265, 136–150. [Google Scholar] [CrossRef] [PubMed] - Lee, S.; Jung, E.; Castillo-Chávez, C. Optimal control intervention strategies in low- and high-risk problem drinking populations. Soc.-Econ. Plan. Sci.
**2010**, 44, 258–265. [Google Scholar] [CrossRef] - Lee, S.; Morales, R.; Castillo-Chávez, C. A note on the use of influenza vaccination strategies when supply is limited. Math. Biosci. Eng.
**2011**, 8, 172–182. [Google Scholar] - Watts, D.M.; Porter, K.R.; Putvatana, P.; Vasquez, B.; Calampa, C.; Hayes, C.G.; Halstead, S.B. Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet
**1999**, 354, 1431–1434. [Google Scholar] [CrossRef] - Rodhain, F.; Rosen, L. Mosquito vectors and dengue virus-vector relationships. Dengue Dengue Hemorrhagic Fever
**1997**, 45–60, 112–134. [Google Scholar] - Aldila, D.; Götz, T.; Soewono, E. An optimal control problem arising from a dengue disease transmission model. Math. Biosci.
**2013**, 242, 9–16. [Google Scholar] [CrossRef] [PubMed] - Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F. Vaccination models and optimal control strategies to dengue. Math. Biosci.
**2014**, 247, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Agusto, F.; Khan, M. Optimal control strategies for dengue transmission in Pakistan. Math. Biosci.
**2018**, 305, 102–121. [Google Scholar] [CrossRef] [PubMed] - Shepard, D.S.; Coudeville, L.; Halasa, Y.A.; Zambrano, B.; Dayan, G.H. Economic impact of dengue illness in the Americas. Am. J. Trop. Med. Hyg.
**2011**, 84, 200–207. [Google Scholar] [CrossRef] [PubMed] - Godói, I.P.; Da Silva, L.V.D.; Sarker, A.R.; Megiddo, I.; Morton, A.; Godman, B.; Alvarez-Madrazo, S.; Bennie, M.; Guerra-Junior, A.A. Economic and epidemiological impact of dengue illness over 16 years from a public health system perspective in Brazil to inform future health policies including the adoption of a dengue vaccine. Expert Rev. Vaccines
**2018**, 17, 1123–1133. [Google Scholar] [CrossRef] [PubMed] - Mourya, D.; Gokhale, M.; Basu, A.; Barde, P.; Sapkal, G.; Padbidri, V.; Gore, M. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Acta Virol.
**2001**, 45, 67–72. [Google Scholar] [PubMed] - Fleming, W.; Rishel, R. Deterministic and Stochastic Optimal Control; Springer: New York, NY, USA, 1975. [Google Scholar]

**Figure 1.**Host model flow diagram: S is the class of susceptible individuals who can become infectious with either DENV-2 American genotype, ${D}_{Am}$, or DENV-2 Asian genotype ${D}_{As}$ via infectious female mosquitoes W carrying the corresponding strain. In this model, only individuals infected with the Asian genotype can progress to DHF, H, and all infected individuals can recover, R. Note that the control function $(1-u(t)$) is modeled as the reduction efforts in the transmission rate from S either to ${D}_{Am}$, or ${D}_{As}$.

**Figure 2.**Vector model flow diagram: V is the class of susceptible female mosquitoes that can become infected with either DENV-2 American genotype ${W}_{Am}$ or DENV-2 Asian genotype ${W}_{As}$ via contact with an infectious human, D carrying the corresponding genotype. Vertical transmission only occurs in mosquitoes infected with genotype Asian. In this model, there is a constant birth rate, but a proportion, p, of those births by mosquitoes carrying genotype Asian, ${W}_{As}$, enter directly into the infectious class. Note that the control function $(1-u(t)$) is modeled as the reduction efforts in the transmission rate from V either to ${W}_{Am}$, or ${W}_{As}$.

**Figure 3.**As the relative cost of the control function, w

_{3}, is reduced, the proportion of infected people decreases. However when the outbreak is dominated by the strain without vertical transmission, (

**a**) then the outbreak can be controlled more easily than when the outbreak is dominated by the strain with vertical transmission, (

**b**) In the latter case, the cost of control must be reduced even further to effectively control the outbreak.

**Figure 4.**As the relative cost of the control function decreases, it is used more frequently and is able to control the outbreak. If the relative cost is expensive, then it is used sparingly and in response to outbreaks. Notice the peaks occur right after an increase in the prevalence of dengue in the corresponding panel of Figure 3.

**Figure 5.**When the dominant strain is DENV-2 American, as the level of vertical transmission increases, the level of optimal control increases (

**b**). Therefore, it is easier to control the outbreak (

**a**).

**Figure 6.**When the dominant strain is DENV-2 Asian, as the level of vertical transmission increases, the level of optimal control increases (

**b**). However, it is harder to control the outbreak (

**a**).

**Figure 7.**Even with an “effective” control program, a high vertical transmission rate can render the health policy moot regardless of the cost of additional control is low (

**a**), or high (

**b**).

**Figure 8.**The outbreak can be well controlled except when vertical transmission is extremely high. Although this situation is unrealistic, it highlights the importance of a control strategy, whether highly cost-efficient, left, or otherwise to take into consideration all possible transmission pathways.

**Figure 9.**Regardless of whether horizontal transmission is low, left panels, or moderate, right panels, a high level of vertical transmission can create extremely large, and costly outbreaks, top panels. If the relative costs of controlling the outbreak are low, w

_{3}, then the epidemic can still be controlled, bottom panels. However, if the cost is high, then the outbreak will be extremely expensive and impossible to control.

**Table 1.**Default Parameter Values: Biological parameters may vary across geographic and temporal scales, however, most of the values are taken from related literature or estimated to achieve the desired reproductive number.

Parameter | Default Value | Units | Source |
---|---|---|---|

M | 1 | per day | [52] |

N | 1 | per day | [52] |

$\alpha $ | 0.113 | per day | [52] |

${\mu}_{m}$ | 0.0958 | per day | [53] |

p | 0–1 | proportion | [27] |

$\mu $ | 0.00038 | per day | estimated |

${\theta}_{As}$ | 0.28 | per day | estimated |

$\theta Am$ | 0.28 | per day | estimated |

${\beta}_{As}$ | 0.01–0.2 | per day | estimated |

${\beta}_{Am}$ | 0.01–0.2 | per day | estimated |

$\delta $ | 0.2 | per day | estimated |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Murillo, D.; Murillo, A.; Lee, S.
The Role of Vertical Transmission in the Control of Dengue Fever. *Int. J. Environ. Res. Public Health* **2019**, *16*, 803.
https://doi.org/10.3390/ijerph16050803

**AMA Style**

Murillo D, Murillo A, Lee S.
The Role of Vertical Transmission in the Control of Dengue Fever. *International Journal of Environmental Research and Public Health*. 2019; 16(5):803.
https://doi.org/10.3390/ijerph16050803

**Chicago/Turabian Style**

Murillo, David, Anarina Murillo, and Sunmi Lee.
2019. "The Role of Vertical Transmission in the Control of Dengue Fever" *International Journal of Environmental Research and Public Health* 16, no. 5: 803.
https://doi.org/10.3390/ijerph16050803