Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene
Abstract
1. Introduction
2. Research Method and Material
2.1. Sample Preparation
2.2. HS Size Fraction Separation
2.3. UV/Vis Measurements
2.4. Fluorescence Spectroscopy
2.5. Fluorescence Quenching
2.6. Statistical Analysis and Calculation of Fluorescence Data
3. Results and Discussion
3.1. DOC Concentration and Carbon Mass Fraction of Size-Fractioned HS
3.2. Optical Indicators
3.3. Sorption Constants between HS and Phe
3.4. Correlation of log KHS with Indicators
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.-C.; Zhang, Y.-X.; Chen, R.F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar. Pollut. Bull. 2001, 42, 1139–1149. [Google Scholar] [CrossRef]
- Shang, J.; Chen, J.; Shen, Z.; Wang, Y.; Ruan, A. Effects of varying estuarine conditions on the sorption of phenanthrene to sediment particles of Yangtze Estuary. Mar. Pollut. Bull. 2013, 76, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Jin, J.; Gao, B.; Zhang, Z.; Wang, Z.; Pan, Z.; Xu, D.; Zhao, Y. Sorption of 17α-ethinyl estradiol, bisphenol A and phenanthrene to different size fractions of soil and sediment. Chemosphere 2012, 88, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ni, J.; Xu, N.; Sun, L. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 2007, 66, 700–707. [Google Scholar] [CrossRef]
- Hur, J.; Lee, D.-H.; Shin, H.-S. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org. Geochem. 2009, 40, 1091–1099. [Google Scholar] [CrossRef]
- Hur, J.; Lee, B.-M.; Shin, K.-H. Spectroscopic characterization of dissolved organic matter isolates from sediments and the association with phenanthrene binding affinity. Chemosphere 2014, 111, 450–457. [Google Scholar] [CrossRef]
- Hur, J.; Kim, G. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Chemosphere 2009, 75, 483–490. [Google Scholar] [CrossRef]
- Vitale, C.M.; Di Guardo, A. A review of the predictive models estimating association of neutral and ionizable organic chemicals with dissolved organic carbon. Sci. Total Environ. 2019, 666, 1022–1032. [Google Scholar] [CrossRef]
- Hur, J.; Schlautman, M.A. Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substances. Environ. Sci. Technol. 2004, 38, 5871–5877. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, M.-H.; Hur, J. A new molecular weight (MW) descriptor of dissolved organic matter to represent the MW-dependent distribution of aromatic condensation: Insights from biodegradation and pyrene binding experiments. Sci. Total Environ. 2019, 660, 169–176. [Google Scholar] [CrossRef]
- Hur, J.; Park, S.-W.; Kim, M.C.; Kim, H.S. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter. Chemosphere 2013, 93, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, Ö.; Nilsson, N.; Bucheli, T.D. Dynamic colloid− water partitioning of pyrene through a coastal Baltic spring bloom. Environ. Sci. Technol. 2001, 35, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, R.D.; Love, N.G.; Novak, J.T. Investigation of sorption behavior between pyrene and colloidal organic carbon from activated sludge processes. Environ. Sci. Technol. 2004, 38, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, A.; Gjessing, E.T.; Lahtinen, T.; Hed, L.; Bhatnagar, A.; Sillanpää, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 2011, 83, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Li, P.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [Google Scholar] [CrossRef]
- Hansen, A.M.; Kraus, T.E.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B.; Liu, W.; Tao, S.; Lin, X.; Zhang, X.; Zhang, Y.; Xiao, Y.; Dai, H.; Yuan, H. Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environ. Pollut. 2006, 143, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.-N.; Lin, T.-F.; Chiu, C.-H.; Chiou, C.T. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption. Environ. Pollut. 2012, 160, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Laor, Y.; Rebhun, M. Evidence for nonlinear binding of PAHs to dissolved humic acids. Environ. Sci. Technol. 2002, 36, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, R.D.; Breidenich, J.; DeRose, P.C. Impact of reclaimed water on select organic matter properties of a receiving stream fluorescence and perylene sorption behavior. Environ. Sci. Technol. 2005, 39, 6453–6460. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 1997, 31, 1630–1635. [Google Scholar] [CrossRef]
- Pan, B.; Ghosh, S.; Xing, B. Nonideal binding between dissolved humic acids and polyaromatic hydrocarbons. Environ. Sci. Technol. 2007, 41, 6472–6478. [Google Scholar] [CrossRef]
- Yeh, Y.-L.; Yeh, K.-J.; Hsu, L.-F.; Yu, W.-C.; Lee, M.-H.; Chen, T.-C. Use of fluorescence quenching method to measure sorption constants of phenolic xenoestrogens onto humic fractions from sediment. J. Hazard. Mater. 2014, 277, 27–33. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Shao, L.-M.; He, P.-J. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate. Environ. Pollut. 2012, 162, 63–71. [Google Scholar] [CrossRef]
- McPhedran, K.N.; Seth, R.; Drouillard, K.G. Investigation of Hydrophobic Organic Carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids. Environ. Sci. Technol. 2013, 47, 2548–2553. [Google Scholar] [CrossRef]
- Chen, G.; Lin, C.; Chen, L.; Yang, H. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil. Chemosphere 2010, 79, 1046–1055. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Sun, H.-W.; Wang, C.-P.; Li, Y.-H. Binding of pyrene to different molecular weight fractions of dissolved organic matter: Effects of chemical composition and steric conformation. Chem. Res. Chin. Univ. 2012, 28, 624–630. [Google Scholar]
- Xu, H.; Zou, L.; Guan, D.; Li, W.; Jiang, H. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Sci. Total Environ. 2019, 665, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B.; Liu, W.; Xing, G.; Tao, S. Investigating interactions of phenanthrene with dissolved organic matter: Limitations of Stern–Volmer plot. Chemosphere 2007, 69, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Fengchang, W.; Liying, W.; Yingchen, B.; Wen, L.; Haiqing, L. Binding characteristics of perylene, phenanthrene and anthracene to different DOM fractions from lake water. J. Environ. Sci. 2009, 21, 414–423. [Google Scholar]
- Backhus, D.A.; Golini, C.; Castellanos, E. Evaluation of fluorescence quenching for assessing the importance of interactions between nonpolar organic pollutants and dissolved organic matter. Environ. Sci. Technol. 2003, 37, 4717–4723. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.-Y.; Yu, H.-Q. Temperature–dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene. Environ. Pollut. 2017, 222, 23–31. [Google Scholar] [CrossRef]
- Chen, X.-M.; Zhao, Y.; Ma, Y.-Y.; Zhu, L.-J.; Yang, T.-X.; Wei, Z.-M.; Dong, Y.-L.; Wei, Q.-B. Assessing the environmental impact of phenanthrene in different types of land use based on the binding characteristics with dissolved organic matter. Ecotoxicol. Environ. Saf. 2018, 147, 394–400. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Kinniburgh, D. An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Comput. Geosci. 2009, 35, 2160–2163. [Google Scholar] [CrossRef]
- Fei, Y.-H.; Li, X.-D.; Li, X.-Y. Organic diagenesis in sediment and its impact on the adsorption of bisphenol A and nonylphenol onto marine sediment. Mar. Pollut. Bull. 2011, 63, 578–582. [Google Scholar] [CrossRef]
- Burdige, D.J.; Komada, T. Sediment pore waters. In Biogeochemistry of Marine Dissolved Organic Matter; Elsevier: Amsterdam, The Netherlands, 2015; pp. 535–577. [Google Scholar]
- Batchelli, S.; Muller, F.L.; Baalousha, M.; Lead, J.R. Size fractionation and optical properties of colloids in an organic-rich estuary (Thurso, UK). Mar. Chem. 2009, 113, 227–237. [Google Scholar] [CrossRef]
- Maizel, A.C.; Remucal, C.K. Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. Environ. Sci. Technol. 2017, 51, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tanoue, E. Molecular mass distribution and fluorescence characteristics of dissolved organic ligands for copper (II) in Lake Biwa, Japan. Org. Geochem. 2001, 32, 11–20. [Google Scholar] [CrossRef]
- Xu, H.; Houghton, E.M.; Houghton, C.J.; Guo, L. Variations in size and composition of colloidal organic matter in a negative freshwater estuary. Sci. Total Environ. 2018, 615, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, L. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. Water Res. 2017, 117, 115–126. [Google Scholar] [CrossRef]
- Chen, M.; Hur, J. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Res. 2015, 79, 10–25. [Google Scholar] [CrossRef]
- Luo, X.-J.; Mai, B.-X.; Yang, Q.-S.; Chen, S.-J.; Zeng, E.Y. Distribution and partition of polycyclic aromatic hydrocarbon in surface water of the Pearl River Estuary, South China. Environ. Monit. Assess. 2008, 145, 427–436. [Google Scholar] [CrossRef]
- Fu, H.; Wei, C.; Qu, X.; Li, H.; Zhu, D. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications. Environ. Pollut. 2018, 232, 402–410. [Google Scholar] [CrossRef]
- Mott, H.V. Association of hydrophobic organic contaminants with soluble organic matter: Evaluation of the database of Kdoc values. Adv. Environ. Res. 2002, 6, 577–593. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Björklund, K.; Strömvall, A.-M.; Blom, L. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Water Res. 2013, 47, 1317–1328. [Google Scholar] [CrossRef]
- Liu, R.; Wilding, A.; Hibberd, A.; Zhou, J.L. Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration. Environ. Sci. Technol. 2005, 39, 2753–2761. [Google Scholar] [CrossRef]
- Yamamoto, H.; Liljestrand, H.M.; Shimizu, Y.; Morita, M. Effects of physical−chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ. Sci. Technol. 2003, 37, 2646–2657. [Google Scholar] [CrossRef] [PubMed]
Samples | pH | OM (%) | TOC (%) |
---|---|---|---|
AD | 7.14 ± 0.12 | 6.60 ± 1.03 | 2.51 ± 0.69 |
FD | 7.22 ± 0.03 | 7.06 ± 1.36 | 2.71 ± 0.70 |
Samples | BHS mg/L | HHS mg/L | MHS mg/L | LHS mg/L |
---|---|---|---|---|
AD | 276–329 | 1451–1833 | 638–752 | 59–78 |
FD | 279–370 | 1108–2220 | 728–946 | 52–71 |
Samples (MW) | SUVA254 (L/mg-C/m) | S275–295 | FI |
---|---|---|---|
AD_HHS (10 kDa to 0.45 μm) | 2.26 ± 0.62 a | 0.0121 ± 0.0006 a | 1.47 ± 0.05 a |
FD_HHS (10 kDa to 0.45 μm) | 3.11 ± 0.54 a | 0.0120 ± 0.0002 a | 1.47 ± 0.01 a |
AD_MHS (1–10 kDa) | 2.95 ± 0.34 a | 0.0117 ± 0.0006 a | 1.46 ± 0.01 a |
FD_MHS (1–10 kDa) | 2.02 ± 0.66 a | 0.0133 ± 0.0016 a | 1.49 ± 0.02 a |
AD_LHS (<1 kDa) | 1.75 ± 0.38 b | 0.0153 ± 0.0006 *,b | 1.76 ± 0.01 b |
FD_LHS (<1 kDa) | 1.75 ± 0.14 b | 0.0177 ± 0.0006 b | 1.81 ± 0.04 b |
Samples | HHS | MHS | LHS |
---|---|---|---|
AD | 4.41 ± 0.29 (3) * | 4.39 ± 0.17 (3) | 4.09 ± 0.10 (3) |
FD | 4.44 ± 0.17 (3) | 4.44 ± 0.00 (2) | 3.97 ± 0.01 (2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.-S.; Huang, W.-S.; Hsu, L.-F.; Yeh, Y.-L.; Chen, T.-C. Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene. Int. J. Environ. Res. Public Health 2019, 16, 5087. https://doi.org/10.3390/ijerph16245087
Shi M-S, Huang W-S, Hsu L-F, Yeh Y-L, Chen T-C. Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene. International Journal of Environmental Research and Public Health. 2019; 16(24):5087. https://doi.org/10.3390/ijerph16245087
Chicago/Turabian StyleShi, Mei-Sheu, Wei-Shiang Huang, Liang-Fong Hsu, Yi-Lung Yeh, and Ting-Chien Chen. 2019. "Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene" International Journal of Environmental Research and Public Health 16, no. 24: 5087. https://doi.org/10.3390/ijerph16245087
APA StyleShi, M.-S., Huang, W.-S., Hsu, L.-F., Yeh, Y.-L., & Chen, T.-C. (2019). Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene. International Journal of Environmental Research and Public Health, 16(24), 5087. https://doi.org/10.3390/ijerph16245087