Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neiva, H.; Faíl, L.; Izquierdo, M.; Marques, M.; Marinho, D. The effect of 12 weeks of water-aerobics on health status and physical fitness: An ecological approach. PLoS ONE 2018, 13, e0198391. [Google Scholar]
- Robinson, L.E.; Devor, S.T.; Buckworth, J. The effects of land vs. aquatic plyometrics on power, torque, velocity, and muscle soreness in women. J. Strength Cond. Res. 2004, 18, 84–91. [Google Scholar] [PubMed]
- Yázigi, F.; Espanha, M.; Vieira, F.; Messier, S.P.; Monteiro, C.; Veloso, A.P. The PICO project: Aquatic exercise for knee osteoarthritis in overweight and obese individuals. BMC Musculoskelet. Disord. 2013, 14, 320. [Google Scholar] [CrossRef] [PubMed]
- Marinho-Buzelli, A.; Bonnyman, A.; Verrier, M. The effects of aquatic therapy on mobility of individuals with neurological diseases: A systematic review. Clin. Rehabil. 2015, 29, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Garrido, M.; Bragada, J. Physiological adaptations to head-out aquatic exercises with different levels of body immersion. J. Strength Cond. Res. 2007, 21, 1255–1259. [Google Scholar] [PubMed]
- Costa, M.J.; Gonçalves, C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Short and long term effects of a head-out aquatic exercise program on body composition, anthropometrics and cardiovascular response of middle-aged women. Int. Sport Med. J. 2014, 15, 41–49. [Google Scholar]
- Havriluk, R. Validation of a criterion measure for swimming technique. J. Swim. Res. 1988, 4, 11–16. [Google Scholar]
- Becker, T.; Havriluk, R. Bilateral and anterior-posterior muscular imbalances in swimmers. Port. J. Sport Sci. 2006, 6, 327–328. [Google Scholar]
- Prins, J.H.; Hartung, G.H.; Merritt, D.J.; Blancq, R.J.; Goobert, D.A. Effect of aquatic exercise training in persons with poliomyelitis disability. Sports Med. Train. Rehabil. 1994, 5, 29–39. [Google Scholar] [CrossRef]
- Sanders, R.; Thow, J.; Alcock, A.; Fairweather, M.; Riach, I.; Mather, F. How can asymmetries in swimming be identified and measured? J. Swim. Res. 2012, 19, 1–15. [Google Scholar]
- Batalha, N.; Marmeleira, J.; Garrido, N.; Silva, A.J. Does a water-training macrocycle really create imbalances in swimmers’ shoulder rotator muscles? Eur. J. Sport Sci. 2015, 15, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.; Pereira, G.; Papoti, M.; Bento, P.C.; Rodacki, A. Propulsive Force Asymmetry during Tethered-Swimming. Int. J. Sports Med. 2013, 34, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Fernandes, R.J.; Marques, M.C. Quantification of upper limb kinetic asymmetries in front crawl swimming. Hum. Mov. Sci. 2015, 40, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Cruz, L.; Simão, A.; Barbosa, T.M. Cardiovascular and perceived effort in head-out water exercises: Effect of limbs’ action and resistance equipment. J. Hum. Kinet. (in press).
- Barbosa, T.M.; Sousa, V.F.; Silva, A.J.; Reis, V.M.; Marinho, D.A.; Bragada, J.A. Effects of musical cadence in the acute physiologic adaptations to head-out aquatic exercises. J. Strength Cond. Res. 2010, 24, 244–250. [Google Scholar] [CrossRef]
- Kinder, T.; See, J. Aqua Aerobics: A Scientific Approach, 1st ed.; Eddie Bowers Pub Co: Dubuque, IA, USA, 1992. [Google Scholar]
- Meeteren, J.; Roebroeck, M.E.; Stam, H.J. Test-retest reliability in isokinetic muscle strength measurements of the shoulder. J. Rehabil. Med. 2002, 34, 91–95. [Google Scholar] [CrossRef]
- Harbo, T.; Brincks, J.; Andersen, H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur. J. Appl. Physiol. 2012, 112, 267–275. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Barbosa, T.M.; Marinho, D.A.; Reis, V.M.; Silva, A.J.; Bragada, J.A. Physiological assessment of head-out aquatic exercises in healthy subjects: A qualitative review. Sport Sci. Med. 2009, 8, 179–189. [Google Scholar]
- Silva, A.J.; Rouboa, A.; Moreira, A.; Reis, V.M.; Alves, F.; Vilas-Boas, J.P.; Marinho, D.A. Analysis of drafting effects in swimming using computational fluid dynamics. J. Sports Sci. Med. 2008, 7, 60–66. [Google Scholar] [PubMed]
- Santos, C.C.; Rama, L.M.; Bartolomeu, R.F.; Barbosa, T.M.; Costa, M.J. Comparison of propulsive forces between two head-out water exercise. J. Hum. Sport Exerc. in press.
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2018; pp. 249–251. [Google Scholar]
- Aquatic Exercise Association (AEA). Aquatic Fitness Professional Manual, 7th ed.; Human Kinetics: Champaign, IL, USA, 2018; pp. 7–8. [Google Scholar]
- Barbosa, T.M.; Oliveira, C.; Teixeira, G.; Costa, M.J.; Marinho, D.A.; Silva, A.J. Kinematical characterization of a basic head-out aquatic exercise during an incremental protocol. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; pp. 90–91. [Google Scholar]
- Evershed, J.; Burkett, B.; Mellifont, R. Musculoskeletal screening to detect asymmetry in swimming. Phys. Ther. Sport 2014, 15, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Carpes, F.; Mota, C.; Faria, I. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.; Thow, J.; Fairweather, M. Asymmetries in swimming: Where do they come from? J. Swim. Res. 2011, 18, 1–11. [Google Scholar]
- Costa, M.J.; Oliveira, C.; Teixeira, G.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. The influence of musical cadence into aquatic jumping jack kinematics. Sport Sci. Med. 2011, 10, 607–615. [Google Scholar]
- Oliveira, C.; Teixeira, G.; Costa, M.J.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Relationship between head-out aquatic exercise kinematics and musical cadence: Analysis of the side kick. Int. Sport Med. J. 2011, 12, 39–52. [Google Scholar]
Variables | Cadence (b·min−1) | |||
---|---|---|---|---|
105 | 120 | 135 | 150 | |
HA | ||||
PropulsiveFD (N) | 31.45 ± 12.13 | 35.81 ± 13.04 | 41.93 ± 14.06 | 47.66 ± 14.42 |
RHadd | ||||
PropulsiveFD (N) | 25.67 ± 8.15 | 32.40 ± 10.39 | 40.57 ± 12.83 | 48.42 ± 14.68 |
Variables | Cadence (b·min−1) | |||
---|---|---|---|---|
105 | 120 | 135 | 150 | |
HA | ||||
RateFD (%) | 44.77 ± 17.46 | 50.98 ± 19.33 α,* | 59.03 ± 20.95 α,**, β,* | 66.43 ± 20.47 α,**, β,* |
RHadd | ||||
RateFD (%) | 37.75 ± 17.20 | 46.69 ± 18.07 | 56.59 ± 19.32 α,** | 67.90 ± 23.64 α,**, β,** |
Variables | Cadence (b·min−1) | ||
---|---|---|---|
105–120 | 120–135 | 135–150 | |
HA | |||
ΔForce (%) | 12.40 ± 10.30 | 13.92 ± 11.05 | 10.53 ± 18.81 |
RHadd | |||
ΔForce (%) | 19.07 ± 15.77 | 18.04 ± 17.15 | 14.43 ± 19.68 |
Cadence (b·min−1) | Variable | HA | RHadd |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
105 | SI (%) | 10.49 ± 8.25 (a) | 14.11 ± 10.77 (b) |
120 | SI (%) | 10.50 ± 7.80 (a) | 14.33 ± 10.38 (b) |
135 | SI (%) | 9.23 ± 5.20 (a) | 12.71 ± 8.13 (b) |
150 | SI (%) | 11.85 ± 7.01 (b) | 15.35 ± 11.03 (b) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.C.; Rama, L.M.; Marinho, D.A.; Barbosa, T.M.; Costa, M.J. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. Int. J. Environ. Res. Public Health 2019, 16, 3784. https://doi.org/10.3390/ijerph16193784
Santos CC, Rama LM, Marinho DA, Barbosa TM, Costa MJ. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. International Journal of Environmental Research and Public Health. 2019; 16(19):3784. https://doi.org/10.3390/ijerph16193784
Chicago/Turabian StyleSantos, Catarina C., Luís M. Rama, Daniel A. Marinho, Tiago M. Barbosa, and Mário J. Costa. 2019. "Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development" International Journal of Environmental Research and Public Health 16, no. 19: 3784. https://doi.org/10.3390/ijerph16193784
APA StyleSantos, C. C., Rama, L. M., Marinho, D. A., Barbosa, T. M., & Costa, M. J. (2019). Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. International Journal of Environmental Research and Public Health, 16(19), 3784. https://doi.org/10.3390/ijerph16193784