Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes
Abstract
:1. Introduction
2. Material and Methods
- Ten NIR Vicon MX-T40 cameras with 4 MP resolution (2352 × 1728 px) and 10-bit gray scale. The measurement space has the shape of an ellipsoidal cylinder with the height of 3 m and a base with 6.47 m and 4.2 m axes
- Four HD video cameras (DV Basler Pilot piA 1900-32gc).
2.1. Signal Processing and Statistical Analysis
- Test I—0.016 [s],
- Test II—0.023 [s],
- Test III—0.028 [s].
- Transverse axes are those axes which pass from one side of the body to the other;
- Sagittal axes pass from the back of the body to the front; and
- Frontal axes pass in a direction from the base to the apex of body.
- Neck—flexion/extension (angle 1), abduction/adduction (angle 2), external/internal rotation (angle 3).
- Spine—flexion/extension (angle 1), abduction/adduction (angle 2), external/internal rotation (angle 3).
- Hip—flexion/extension (angle 1), abduction/adduction (angle 2), external/internal rotation (angle 3).
- Knee—flexion/extension (angle 1), external/internal rotation (angle 3).
- Ankle—flexion/extension (angle 1), abduction/adduction (angle 2), external/internal rotation (angle 3).
2.2. Characteristics of the Participants
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuśnierz, C. Values associated with practicing modern karate as a form of cultivating old Japanese Bushido patterns. Ido Movement For Culture. J. Martial Arts Anthrop. 2011, 11, 1–5. [Google Scholar]
- Kuśnierz, C.; Cynarski, W.J.; Litwiniuk, A. Comparison of aggressiveness levels in combat sports and martial arts male athletes to non-practising peers. Arch. Budo 2014, 10, 253–260. [Google Scholar]
- Marszałek, M. The Comparison of Karate Kyokushin Sport Technique—Mae-Geri, Performed by Master and Students According to Age and Training Level. Master’s Thesis, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland, 2018. [Google Scholar]
- Portela, B.S.; Barbosa, M.R.; Cavazzotto, T.G.; Peikriswili Tartaruga, M. Kinematics analysis of the front kick with and without impact on traditional karate. Arch. Budo Sci. Martial Arts Extrem. Sports 2014, 10, 47–51. [Google Scholar]
- Nakayama, M. Dynamic Karate: Instruction by the Master; Kodansha International Ltd.: Tokyo, Japan, 1966. [Google Scholar]
- VencesBrito, A.M.; Rodrigues Ferreira, M.A.; Cortes, N.; Fernandes, O.; Pezarat-Correia, P. Kinematic and electromyographic analyses of a karate punch. J. Electromyogr. Kines. 2011, 21, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borysiuk, Z.; Sadowski, J. Time and spatial aspects of movement anticipation. Biol. Sport 2007, 24, 285–295. [Google Scholar]
- Witte, K.; Emmermacher, P.; Langenbeck, N.; Perl, J. Visualized movement patterns and their analysis to classify similarities—Demonstrated by the karate kick mae-geri. Kinesiology 2012, 44, 155–165. [Google Scholar]
- BalkóRous, M.; Balkó, I.; Hnízdil, J.; Borysiuk, Z. Influence of a 9-week training intervention on the reaction time of fencers aged 15 to 18 years. Phys. Activ. Rev. 2017, 5, 146–154. [Google Scholar]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular control adaptations in elite athletes: The case of top level karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. [Google Scholar] [CrossRef]
- Sforza, C.; Turci, M.; Grassi, G.; Shirai, Y.F.; Pizzini, G.; Ferrario, V.F. The repeatability of mae-geri-keage in traditional karate: A three-dimensional analysis with black-belt karateca. Percept. Motor Ski. 2002, 95, 433–444. [Google Scholar] [CrossRef]
- Pozo, J.; Bastien, G.; Dierick, F. Execution time, kinetics, and kinematics of the mae-geri kick: Comparison of national and international standard karate athletes. J. Sport. Sci. 2011, 29, 1553–1561. [Google Scholar]
- Picerno, P. The hamstrings-injury-mechanism debate: Are we close to an agreement? J. Sport Rehabil. 2017, 26, 120–121. [Google Scholar] [PubMed]
- Zetaruk, M.N.; Violan, M.A.; Zurakowski, D.; Micheli, L.J. Injuries in martial arts: A comparison of five styles. Brit. J. Sport. Med. 2005, 39, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Macan, J.; Bundalo-Vrbanac, D.; Romic, G. Effects of the new karate rules on the incidence and distribution of injuries. Brit. J. Sport. Med. 2006, 40, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E. Boxing, wrestling, and martial arts related injuries treated in emergency departments in the United States, 2002–2005. J. Sport. Sci. Med. 2007, 6, 58–61. [Google Scholar]
- Pieter, W. Competition injury rates in young karate athletes. Sci. Sport. 2010, 25, 32–38. [Google Scholar]
- Hachaj, T.; Piekarczyk, M.; Ogiela, M. Human actions analysis: Templates generation, matching and visualization applied to motion capture of highly-skilled karate athletes. Sensors 2017, 17, 2590. [Google Scholar] [CrossRef]
- Mendes, J., Jr.; Vieira, M.; Pires, M.; Stevan, S., Jr. Sensor fusion and smart sensor in sports and biomedical applications. Sensors 2016, 16, 1569. [Google Scholar] [CrossRef]
- Hachaj, T.; Ogiela, M.; Koptyra, K. Application of assistive computer vision methods to Oyama karate techniques recognition. Symmetry 2015, 7, 1670–1698. [Google Scholar]
- Worsey, M.T.; Espinosa, H.G.; Shepherd, J.B.; Thiel, D.V. Inertial sensors for performance analysis in combat sports: A systematic review. Sports 2019, 7, 28. [Google Scholar] [CrossRef]
- Wasik, J.; Ortenburger, D.; Gora, T.; Mosler, D. The influence of effective distance on the impact of a punch -Preliminary Analysis. Phys. Activ. Rev. 2018, 6, 81–86. [Google Scholar]
- Schack, T.; Mechsner, F. Representation of motor skills in human long-term memory. Neurosci. Lett. 2006, 391, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Vences Brito, A.M.; Branco, M.A.C.; Fernandes, R.M.; Ferreira, M.; Fernandes, O.J.S.M.; Figueiredo, A.A.A.; Branco, G. Characterization of kinesiological patterns of the frontal kick, mae-geri, in karate experts and non-karate practitioners. Revista de Artes Marciales Asiáticas 2014, 9, 20–31. [Google Scholar] [CrossRef]
- Romano, G.; Viggiano, D. Interception of moving objects in karate: An experimental, marker-free benchmark. Muscles Ligaments Tendons J. 2014, 4, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Wąsik, J.; Góra, T. Impact of target selection on front kick kinematics in taekwondo—Pilot study. Phys. Activ. Rev. 2016, 4, 57–61. [Google Scholar] [CrossRef]
- Lacquaniti, F.; Soechting, J.F.; Terzuolo, S.A. Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 1986, 17, 313–324. [Google Scholar] [CrossRef]
- Berret, B.; Chiovetto, E.; Nori, F.; Pozzo, T. Manifold reaching paradigm: How do we handle target redundancy? J. Neurophysiol. 2011, 106, 2086–2102. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 2004, 7, 907–915. [Google Scholar] [CrossRef] [Green Version]
Variables | G1 (N = 13) | G2 (N = 13) |
---|---|---|
Age min/max/x¯/SD (years) | 21/47/33.9/8.89 | 10/12/11.15/0.85 |
Weight x¯/SD (kg) | 73.9/22.72 | 40.54/6.18 |
Height x¯/SD (m) | 1.74/0.11 | 1.50/0.06 |
BMI x¯/SD | 23.88/4.04 | 17.97/2.69 |
Variables | Test I | Test II | Test III | ||||||
---|---|---|---|---|---|---|---|---|---|
p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | |
Neck Ang 1 Max | 0.03 (*) | 30.85 | 23.66 | 0.07 | 29.83 | 21.29 | 0.81 | 32.84 | 31.45 |
Neck Ang 2 Max | < 0.001 (***) | −0.22 | 10.54 | < 0.001 (***) | −1.46 | 8.45 | < 0.001 (***) | −0.45 | 7.10 |
Neck Ang 3 Max | 0.16 | 28.03 | 30.92 | 0.03 (*) | 27.16 | 23.23 | 0.21 | 27.90 | 23.09 |
Neck Ang 1 Min | 0.02 (*) | 30.21 | 22.84 | 0.05 | 28.36 | 19.58 | 0.57 | 31.64 | 29.60 |
Neck Ang 2 Min | < 0.001 (***) | −0.61 | 10.18 | < 0.001 (***) | −2.15 | 7.62 | < 0.001 (***) | −1.12 | 6.53 |
Neck Ang 3 Min | 0.16 | 27.39 | 30.21 | 0.02 (*) | 25.23 | 20.89 | 0.16 | 26.28 | 21.73 |
Neck Ang 1 Avg | 0.02 (*) | 30.54 | 23.26 | 0.07 | 29.12 | 20.46 | 0.70 | 32.30 | 30.59 |
Neck Ang 2 Avg | < 0.001 (****) | −0.42 | 10.36 | < 0.01 (**) | −1.81 | 8.06 | < 0.001 (***) | −0.78 | 6.83 |
Neck Ang 3 Avg | 0.16 | 27.72 | 30.57 | 0.03 (*) | 26.23 | 22.12 | 0.18 | 27.13 | 22.44 |
Variables | Test I | Test II | Test III | ||||||
---|---|---|---|---|---|---|---|---|---|
p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | |
Spine Ang 1 Max | 0.01 (*) | 22.06 | 30.14 | < 0.001 (***) | 15.71 | 30.03 | < 0.001 (***) | 15.87 | 25.74 |
Spine Ang 2 Max | 0.01 (*) | 18.92 | 15.95 | 0.04 (*) | 11.74 | 8.83 | < 0.01 (**) | 13.60 | 8.36 |
Spine Ang 3 Max | 0.66 | 13.81 | 12.50 | 0.67 | 13.74 | 14.02 | 0.87 | 12.53 | 13.14 |
Spine Ang 1 Min | 0.01 (*) | 21.19 | 29.02 | < 0.001 (***) | 14.81 | 28.63 | < 0.001 (***) | 13.79 | 24.23 |
Spine Ang 2 Min | 0.01 (*) | 18.47 | 15.39 | 0.03 (*) | 11.13 | 7.90 | <0.01 (**) | 12.22 | 7.13 |
Spine Ang 3 Min | 0.56 | 13.32 | 11.88 | 0.80 | 12.70 | 12.64 | 0.36 | 10.97 | 12.33 |
Spine Ang 1 Avg | 0.01 (*) | 21.61 | 29.57 | < 0.001 (***) | 15.25 | 29.36 | < 0.001 (***) | 14.82 | 25.00 |
Spine Ang 2 Avg | 0.01 (*) | 18.69 | 15.66 | 0.03 (*) | 11.43 | 8.35 | < 0.01 (**) | 12.91 | 7.73 |
Spine Ang 3 Avg | 0.60 | 13.57 | 12.20 | 0.76 | 13.23 | 13.36 | 0.66 | 11.75 | 12.76 |
Variables | Test I | Test II | Test III | ||||||
---|---|---|---|---|---|---|---|---|---|
p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | |
Hip Ang 1 Max | 0.07 | 67.05 | 59.03 | 0.20 | 54.94 | 60.24 | 0.41 | 53.40 | 56.73 |
Hip Ang 2 Max | 0.03 (*) | −33.62 | −27.14 | 0.02 (*) | −29.46 | −22.64 | < 0.01 (**) | −25.40 | −18.30 |
Hip Ang 3 Max | 0.65 | −0.02 | 3.25 | 0.39 | −4.67 | 3.91 | 0.31 | −5.08 | −0.34 |
Hip Ang 1 Min | 0.06 | 65.66 | 57.49 | 0.17 | 53.25 | 58.71 | 0.50 | 49.76 | 53.02 |
Hip Ang 2 Min | 0.05 | −34.20 | −28.59 | 0.02 (*) | −31.33 | −25.21 | < 0.01 (**) | −27.29 | −20.26 |
Hip Ang 3 Min | 0.73 | −3.96 | −4.86 | 0.73 | −7.92 | −2.52 | 0.61 | −10.13 | −7.26 |
Hip Ang 1 Avg | 0.06 | 66.27 | 58.16 | 0.17 | 53.91 | 59.26 | 0.43 | 51.39 | 54.76 |
Hip Ang 2 Avg | 0.03 (*) | −33.92 | −27.87 | 0.02 (*) | −30.43 | −24.01 | < 0.01 (**) | −26.36 | −19.31 |
Hip Ang 3 Avg | 0.99 | −2.21 | −1.06 | 0.56 | −6.41 | 0.74 | 0.49 | −7.68 | −4.13 |
Variables | Test I | Test II | Test III | ||||||
---|---|---|---|---|---|---|---|---|---|
p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | |
Knee Ang 1 Max | 0.65 | −1.70 | −2.20 | 0.02 (*) | 3.65 | 12.12 | 0.30 | 6.08 | 11.11 |
Knee Ang 3 Max | 0.25 | −9.04 | −13.77 | 0.49 | −8.08 | −7.52 | 0.59 | −5.88 | −10.29 |
Knee Ang 1 Min | 0.68 | −3.17 | −3.50 | 0.05 | 2.09 | 9.98 | 0.36 | 4.27 | 9.00 |
Knee Ang 3 Min | 0.12 | −11.39 | −17.19 | 0.61 | −10.08 | −10.18 | 0.66 | −9.56 | −14.33 |
Knee Ang 1 Avg | 0.69 | −2.61 | −2.99 | 0.04 (*) | 2.63 | 10.67 | 0.32 | 4.84 | 9.64 |
Knee Ang 3 Avg | 0.20 | −10.29 | −15.60 | 0.58 | −9.31 | −9.12 | 0.61 | −7.87 | −12.48 |
Variables | Test I | Test II | Test III | ||||||
---|---|---|---|---|---|---|---|---|---|
p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | p | Mean G1 (deg) | Mean G2 (deg) | |
Ank Ang 1 Max | 0.21 | −34.23 | −27.54 | < 0.001 (***) | −29.86 | −15.82 | 0.59 | −23.40 | −20.51 |
Ank Ang 2 Max | 0.86 | −0.01 | 0.48 | 0.09 | −0.20 | 1.73 | 0.68 | 0.34 | 0.22 |
Ank Ang 3 Max | 0.68 | 3.83 | 4.49 | 0.21 | 5.28 | 2.00 | 0.89 | 4.13 | 4.23 |
Ank Ang 1 Min | 0.25 | −35.66 | −29.04 | < 0.001 (***) | −32.78 | −19.50 | 0.73 | −26.14 | −24.02 |
Ank Ang 2 Min | 0.65 | −0.56 | −0.75 | 0.28 | −1.01 | −0.03 | 0.99 | −0.63 | −1.06 |
Ank Ang 3 Min | 0.81 | 1.81 | 0.24 | 0.11 | 2.07 | −3.63 | 0.64 | 0.52 | −0.12 |
Ank Ang 1 Avg | 0.27 | −34.96 | −28.31 | < 0.001 (***) | −31.66 | −17.96 | 0.70 | −24.90 | −22.29 |
Ank Ang 2 Avg | 0.82 | −0.32 | −0.20 | 0.15 | −0.67 | 0.78 | 0.81 | −0.18 | −0.49 |
Ank Ang 3 Avg | 0.87 | 2.96 | 2.59 | 0.15 | 3.90 | −0.61 | 0.89 | 2.43 | 2.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyszyn, M.; Szczęsna, A.; Pawlyta, M.; Marszałek, M.; Karczmit, D. Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes. Int. J. Environ. Res. Public Health 2019, 16, 3155. https://doi.org/10.3390/ijerph16173155
Błaszczyszyn M, Szczęsna A, Pawlyta M, Marszałek M, Karczmit D. Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes. International Journal of Environmental Research and Public Health. 2019; 16(17):3155. https://doi.org/10.3390/ijerph16173155
Chicago/Turabian StyleBłaszczyszyn, Monika, Agnieszka Szczęsna, Magdalena Pawlyta, Maciej Marszałek, and Dariusz Karczmit. 2019. "Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes" International Journal of Environmental Research and Public Health 16, no. 17: 3155. https://doi.org/10.3390/ijerph16173155
APA StyleBłaszczyszyn, M., Szczęsna, A., Pawlyta, M., Marszałek, M., & Karczmit, D. (2019). Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes. International Journal of Environmental Research and Public Health, 16(17), 3155. https://doi.org/10.3390/ijerph16173155