Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Procedure
2.3. Experiment and Analysis Methods
2.3.1. Potential Ecological Risk Assessment Methods
2.3.2. Population Health Risk Assessment Methods
2.3.3. Statistical Analysis and Geochemical Mapping
3. Results
3.1. The Concentrations of Multi-Major and Multi-Trace Metal/Metalloids in SDs
3.2. Spatial Distribution of Multi-Trace Metal/Metalloids in SDs
3.3. Potential Ecological Risk Assessment of Multi-Trace Metal/Metalloids in SDs
4. Discussion
4.1. Discrimination the Sources of Multi-Trace Metal/Metalloids in SDs
4.2. Health Risk Assessment of Toxic Trace Metals Potential Emission from Traffic Sources in SDs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Z.; Ge, H.; Lu, W.; Long, Y. Assessment of Heavy Metals Contamination in Near-Surface Dust. Pol. J. Environ. Stud. 2015, 24, 1817–1829. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, M.; Gao, Y.; Zhang, Y.C.; Zhang, X.; Yan, X.Y.; Wang, S.; Yang, R.; Liu, B.; Yu, H.T. Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: Spatial occurrences, sources and health risks. Ecotoxicol. Environ. Saf. 2018, 162, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.L.; De, M.E. Geochemistry and risk assessment of street dust in Luanda, Angola. A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical Composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef]
- Sharareh, D.; Farid, M.; Behnam, K.; Beverley Hale, A. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran. Iran. Ecotoxicol. Environ. Saf. 2017, 136, 92–103. [Google Scholar]
- Wong, C.S.C.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Pan, H.; Wang, Y. Pollution evaluation and source analysis of heavy metal in roadway dust from a resource-typed industrial city in Northwest China. Atmos. Pollut. Res. 2017, 8, 587–595. [Google Scholar] [CrossRef]
- Al Jallad, F.; Al Katheeri, E.; Al Omar, M. Levels of particulate matter in Western UAE desert and factors affecting their distribution. WIT Trans. Ecol. Environ. 2013, 174, 111–122. [Google Scholar]
- Yuen, J.Q.; Olin, P.H.; Lim, H.S.; Benner, S.G.; Sutherland, R.A.; Ziegler, A.D. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. J. Environ. Manag. 2012, 101, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Maghakyan, N.; Tepanosyan, G.; Belyaeva, O.; Sahakyan, L.; Saghatelyan, A. Assessment of pollution levels and human health risk of heavy metals in dust deposited on Yerevan’s tree leaves (Armenia). Acta Geochim. 2017, 36, 16–26. [Google Scholar] [CrossRef]
- Cui, X.T.; Liu, W. Heavy Metal Concentration and Assessment of Environmental Quality in Atmospheric Dust near Ground of Tangshan City. Geoscience 2017, 31, 184–190. [Google Scholar]
- Watt, J.; Thornton, I.; Cotter-Howells, J. Physical evidence suggesting the transfer of soil Pb into young children via hand-to-mouth activity. Appl. Geochem. 1993, 8, 269–272. [Google Scholar] [CrossRef]
- Li, H.B.; Chen, K.; Juhasz, A.L.; Huang, L.; Ma, L.Q. Childhood Lead Exposure in an Industrial Town in China: Coupling Stable Isotope Ratios with Bioaccessible Lead. Environ. Sci. Technol. 2015, 49, 5080–5087. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Lu, X.W.; Huang, L.; Zhuang, S.K.; Shi, C.Q.; Yin, N.; Wang, Q.; Li, Y.X.; Zhu, Y.J. Pollution Level and Health Risk of Heavy Metals in Dust from City Parks of Xi’an. Urban Environ. Urban Ecol. 2015, 6, 3–12. [Google Scholar]
- Xing-min, Z.H.A.O.; Lan-po, Z.H.A.O.; Xiu-yi, H.U.A. Distribution Characteristics and Sources Analysis of Heavy Metal in Atmospheric Dustfall in Changchun. Urban Environ. Urban Ecol. 2009, 4, 10–18. [Google Scholar]
- Sulaiman, F.R.; Bakri, N.I.F.; Nazmi, N.; Latif, M.T. Assessment of heavy metals in indoor dust of a university in a tropical environment. Environ. Forensics 2017, 18, 74–82. [Google Scholar] [CrossRef]
- Han, Y.; Du, P.; Cao, J.; Eric, S.P. Multivariate analysis of heavy metal contamination in urban dusts of Xi Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, B.S.; Suryawanshi, P.V.; Bhanarkar, A.D.; Rao, C.V.C. Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 2014, 72, 3929–3938. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, Q.; Appel, E.; Huang, B. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor. 2012, 119, 60–75. [Google Scholar] [CrossRef]
- Atiemo, S.M.; Ofosu, F.G.; Aboh, I.J.K.; Oppon, O.C. Levels and sources of heavy metal contamination in road dust in selected major highways of Accra, Ghana. X-ray Spectrom. 2012, 41, 105–110. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Zhu, J.; Qin, H.; Dai, Z.; Liu, J.; Li, Q.; Sun, G. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ. Pollut. 2013, 182, 408–416. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Pan, H. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi’an, China. Environ. Sci. Pollut. Res. 2016, 23, 19838–19846. [Google Scholar] [CrossRef]
- Pan, H.Y.; Lu, X.W.; Lei, K.A. comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.W.; Loretta, Y. Li Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Xi’an News Network. Xi’an’s Motor Vehicle Ownership Exceeded 3 Million Vehicles [On-line]. Available online: http://news.xiancn.com/content/2018-05/05/content_3335735.htm (accessed on 5 May 2018).
- Dos Anjos, M.J.; Lopes, R.T.; De Jesus, E.F.O.; Assis, J.T.; Cesareo, R.; Barradas, C.A.A. Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2000, 55, 1189–1194. [Google Scholar] [CrossRef]
- Li, X.P.; Feng, L.N. Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas, (NW, China): Controlling factors and contamination assessments. J. Hazard. Mater. 2010, 174, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Cheng, H.X.; Li, K.; Li, M.; Yang, K.; Liu, F.; Cheng, X.M. Geochemical Background and Baseline Value of Chemical Elements in Urban Soil in China. Earth Sci. Front. 2014, 21, 265–306. [Google Scholar]
- USEPA. Superfund Public Health Evaluation Manual [S], EPA/540/1-86; USEPA: Washington, DC, USA, 1986.
- USEPA. (United States Environmental Protection Agency). Soil Screening Guidance: Technical Background Document; EPA/540/R-95/128; Office of Solid Waste and Emergency Response; USEPA: Washington, DC, USA, 1996.
- USEPA. (United States Environmental Protection Agency). Human Health Evaluation Manual. In Risk Assessment Guidance for Superfund; EPA/540/1-89/002; Office of Solid Waste and Emergency Response: Washington, DC, USA, 1989; Volume I. [Google Scholar]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Fan, S. Pollution and Health Risk Assessment of Heavy Metals Around the Smelter of Changqing Town, Baoji. Environ. Eng. 2014, 37, 46–54. [Google Scholar]
- Shi, X.; Wang, J. Comparison of different methods for assessing heavy metal contamination in street dust of Xianyang City, NW China. Environ. Earth Sci. 2013, 68, 2409–2415. [Google Scholar] [CrossRef]
- Zhang, C.; Selinus, O. Statistics and GIS in environmental geochemistry-some problems and solutions. J. Geochem. Explor. 1998, 64, 339–354. [Google Scholar] [CrossRef]
- Ahrens, L.H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim. Cosmochim. Acta 1954, 5, 49–73. [Google Scholar] [CrossRef]
- Christof, L. Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size. Fuel 2018, 228, 263–271. [Google Scholar]
- Font, O.; Querol, X.; Huggins, E.F.; Chimenos, M.J.; Fernandez, A.I.; Burgos, S.; Pena, F.G. Speciation of major and selected trace elements in IGCC fly ash. Fuel 2005, 84, 1364–1371. [Google Scholar] [CrossRef]
- Gibbs, B.M.; Thompson, D.; Argent, B.B. Mobilisation of trace elements from as supplied and additionally cleaned coal: Predictions for Ba, Be, Cd, Co, Mo, Nb, Sb, V and W. Fuel 2008, 87, 1217–1229. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Wang, Y.; Yang, S. Distributions of minor and trace elements in Chinese coals. Int. J. Coal Geol. 1999, 40, 109–118. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal; Butterworths: London, UK, 1990. [Google Scholar]
- Swaine, D.J.; Goodarzi, F. Environmental Aspects of Trace Elements in Coal; Kluwer Academic Publishers: Dodrecht, The Netherlands, 1995; pp. 24–50. [Google Scholar]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On airborne nano/microsized wear particles released from low-metallic automotive brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Manno, E.; Varrica, D.; Dongarra, G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmos. Environ. 2006, 40, 5929–5941. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, K.S.; Jang, H. Optimization of manufacturing parameters for a brake lining using Taguchi method. J. Mater. Proc. Technol. 2003, 136, 202–208. [Google Scholar] [CrossRef]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Valotto, G.; Rampazzo, G.; Visin, F.; Gonella, F.; Cattaruzza, E.; Glisenti, A.; Formenton, G.; Tieppo, P. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmos. Environ. 2015, 122, 596–608. [Google Scholar] [CrossRef]
- Yildirim, G.; Tokalioğlu, S. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis. Ecotoxicol. Environ. Saf. 2016, 124, 369–376. [Google Scholar] [CrossRef]
- Al-Khlaifata, A.; Al-Khashman, O.A. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos. Environ. 2007, 41, 8891–8897. [Google Scholar] [CrossRef]
- Zayed, J.; Pitre, J.; Rivard, M.; Loranger, S. Evaluation of pollutant emissions related to the use of MMT in gasoline. Water Air Soil Pollut. 1999, 109, 137–145. [Google Scholar] [CrossRef]
- Guney, M.; Zagury, G.J.; Dogan, N.; Onay, T.T. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J. Hazard. Mater. 2010, 182, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, R.; Tripathi, R.M.; Kumar, A.V.; Sathe, A.P.; Khandekar, R.N.; Nambi, K.S.V. Assessment of Pb, Cd, Cu, and Zn exposures of 6-to 10-yearold children in Mumbai. Environ. Res. 1999, 80, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Azienda Nazionale Autonoma delle Strade (ANAS). S.p.A. Segnaletica Stradale Orizzontale: Normativa, Materiali, Caratteristiche Tecniche eMetodologie di Controllo; Centro Sperimentale Stradale (CSS): Cesano di Roma, Italy, 2007. (In Italian) [Google Scholar]
- Van, A.M. Paint film components. In National Environmental Health Forum Monographs (General Series no. 2); Glenelg Press: Glenelg, Australia, 1998. [Google Scholar]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Masiol, M.; Rampazzo, G.; Ceccato, D.; Squizzato, S.; Pavoni, B. Characterization of PM10 sources in a coastal area near Venice (Italy): An application of factor-cluster analysis. Chemosphere 2010, 80, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.S.; Madany, I.M. Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut. 1993, 66, 111–119. [Google Scholar] [CrossRef]
- Hedberg, E.; Gidhagen, L.; Johansson, C. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 2005, 39, 549–561. [Google Scholar] [CrossRef]
- Mazzei, F.; D’Alessandro, A.; Lucarelli, F.; Nava, S.; Prati, P.; Valli, G.; Vecchi, R. Characterization of particulate matter sources in an urban environment. Sci. Total Environ. 2008, 401, 81–89. [Google Scholar] [CrossRef]
- Arsene, C.; Olariu, R.I.; Zarmpas, P.; Kanakidou, M.; Mihalopoulos, N. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area. Atmos. Environ. 2011, 45, 906–916. [Google Scholar] [CrossRef]
- Jancsek-Turoczi, B.; Hoffer, A.; Nyiro-Kosa, I.; Gelencser, A. Sampling and characterization of resuspended and respirable road dust. J. Aerosol Sci. 2013, 65, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Giovanni, S.; Rodica, C.; Alessandro, C.; Stefano, G. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environ. Pollut. 2015, 207, 211–219. [Google Scholar]
- Sternbeck, J.; Sjodin, A.; Andr_easson, K. Metal emissions from road traffic and the influence of resuspension-results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Beddows, D.C.; Gietl, J.K.; Olatunbosun, O.A.; Yang, X.; Harrison, R.M. Characteristics of tire dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmos. Environ. 2014, 94, 224–230. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, Y.; Lu, J.; Zhang, C. Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environ. Pollut. 2011, 159, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, L.; Huang, C.; Yan, X.; Zhang, X. Chemical characteristics of atmospheric fallout in the south of Xi’an during the dust episodes of 2001–2012 (NW China). Atmos. Environ. 2014, 83, 109–118. [Google Scholar] [CrossRef]
- Shi, D.; Lu, X. Accumulation degree and source apportionment of trace metals in smaller than 63μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Mohmand, J.; Eqani, S.A.M.A.S.; Fasola, M.; Alamdar, A.; Ali, N.; Mustafa, I.; Liu, P.; Peng, S.; Shen, H. Human exposures to toxic metals via contaminated dust: Bioaccumulation trends and risk assessment. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef] [PubMed]
Elements | LLD | Unit | Mean | Minimum | Maximum | S.D. | C.V. | Background Value of Soil in Xi’an [34] | |
---|---|---|---|---|---|---|---|---|---|
Trace metal/metalloids | As | 0.6 | mg/kg | 11.73 | 2.60 | 39.20 | 4.25 | 0.36 | 12.00 |
Ba | 6.3 | mg/kg | 748.23 | 560.70 | 1366.20 | 127.75 | 0.17 | 542.00 | |
Ce | 14.5 | mg/kg | 88.59 | 36.40 | 141.90 | 14.65 | 0.17 | 68.00 | |
Co | 0.9 | mg/kg | 13.71 | 10.50 | 26.40 | 2.14 | 0.16 | 14.00 | |
Cr | 3.1 | mg/kg | 175.18 | 129.40 | 784.80 | 66.21 | 0.38 | 75.00 | |
Cu | 0.7 | mg/kg | 50.91 | 19.70 | 390.40 | 38.62 | 0.76 | 27.00 | |
Ga | 0.7 | mg/kg | 14.54 | 10.80 | 19.30 | 1.82 | 0.13 | 16.00 | |
La | 7.3 | mg/kg | 31.92 | 18.90 | 42.00 | 4.01 | 0.13 | 40.00 | |
Mn | 1.6 | mg/kg | 486.42 | 412.40 | 622.40 | 34.68 | 0.07 | 660.00 | |
Nb | 0.5 | mg/kg | 11.90 | 9.70 | 18.00 | 1.38 | 0.12 | 15.00 | |
Ni | 0.7 | mg/kg | 21.04 | 6.80 | 122.50 | 11.79 | 0.56 | 32.00 | |
Pb | 1.4 | mg/kg | 93.45 | 40.70 | 289.10 | 42.76 | 0.46 | 23.00 | |
Rb | 0.7 | mg/kg | 44.19 | 17.40 | 65.80 | 10.24 | 0.23 | 106.00 | |
Sr | 0.7 | mg/kg | 186.54 | 80.20 | 380.20 | 47.64 | 0.26 | 242.00 | |
Ti | 8.7 | mg/kg | 2949.18 | 2387.00 | 4162.00 | 245.52 | 0.08 | 4092.00 | |
V | 2.4 | mg/kg | 69.28 | 53.20 | 83.60 | 4.89 | 0.07 | 88.00 | |
Y | 0.8 | mg/kg | 18.57 | 9.20 | 32.60 | 5.37 | 0.29 | 24.00 | |
Zn | 0.8 | mg/kg | 272.04 | 102.90 | 4344.80 | 416.20 | 1.53 | 70.00 | |
Zr | 0.8 | mg/kg | 120.13 | 47.40 | 301.20 | 38.94 | 0.32 | 209.00 | |
Major metals | Al2O3 | 0.01 | % | 8.04 | 6.87 | 9.28 | 0.45 | 0.06 | 12.33 |
CaO | 0.01 | % | 8.17 | 3.24 | 14.28 | 1.37 | 0.17 | 6.33 | |
Fe2O3 | 0.01 | % | 5.36 | 4.14 | 11.2 | 0.95 | 0.18 | 4.75 | |
K2O | 0.01 | % | 1.45 | 1.09 | 1.62 | 0.08 | 0.06 | 2.59 | |
MgO | 0.01 | % | 1.96 | 1.68 | 2.72 | 0.15 | 0.08 | 2.26 | |
Na2O | 0.01 | % | 2.52 | 2.00 | 3.69 | 0.26 | 0.10 | 1.44 | |
SiO2 | 0.02 | % | 37.18 | 30.19 | 43.97 | 2.45 | 0.07 | 58.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, B.; Zhang, Y.; Wang, J.; Ullah, H.; Zhou, M.; Peng, L.; He, A.; Zhang, X.; Yan, X.; et al. Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China). Int. J. Environ. Res. Public Health 2019, 16, 2992. https://doi.org/10.3390/ijerph16162992
Li X, Liu B, Zhang Y, Wang J, Ullah H, Zhou M, Peng L, He A, Zhang X, Yan X, et al. Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China). International Journal of Environmental Research and Public Health. 2019; 16(16):2992. https://doi.org/10.3390/ijerph16162992
Chicago/Turabian StyleLi, Xiaoping, Bin Liu, Yu Zhang, Jiwen Wang, Hameed Ullah, Ming Zhou, Liyuan Peng, Ana He, Xu Zhang, Xiangyang Yan, and et al. 2019. "Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China)" International Journal of Environmental Research and Public Health 16, no. 16: 2992. https://doi.org/10.3390/ijerph16162992
APA StyleLi, X., Liu, B., Zhang, Y., Wang, J., Ullah, H., Zhou, M., Peng, L., He, A., Zhang, X., Yan, X., Yang, T., Wang, L., & Yu, H. (2019). Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China). International Journal of Environmental Research and Public Health, 16(16), 2992. https://doi.org/10.3390/ijerph16162992