Metal(loid)s in Cucurbita pepo in a Uranium Mining Impacted Area in Northwestern New Mexico, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Plant and Plant Part Samples
2.3. Plant Identification and Nomenclature
2.4. Human Harvester Questionnaire Data
2.5. Soil Samples
2.6. Water Samples
2.7. Global Positioning System Data
2.8. Sample Analysis
2.9. Statistical Analysis
3. Results
3.1. Human Harvester Questionnaire Data
3.2. Metal(loid)s in Irrigation Water
3.3. Metal(loid)s in Soil and Crop Plant Tissue
3.4. Comparison of Metal(loid)s by Crop-Plot-Production Years
3.5. PTWI Human Intake Calculations
3.6. Human Intake Calculations for As, Cd, and Pb
3.7. Human Intake Calculations for Mo, Se, and V
4. Discussion
4.1. Human Harvester Data and Implications
4.2. Limitations
4.3. Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.; Landis, J.D.; George, C.C.; Slagowski, N.L.; Rock, T.; Brugge, D.; Lewis, J.; Durant, J.L. Rapid dissolution of soluble uranyl phases in arid, mine-impacted catchments near Church Rock, NM. Environ. Sci. Technol. 2008, 42, 3951–3957. [Google Scholar] [CrossRef] [PubMed]
- deLemos, J.L.; Brugge, D.; Cajero, M.; Downs, M.; Durant, J.L.; George, C.M.; Henio-Adeky, S.; Nez, T.; Manning, T.; Rock, T.; et al. Development of risk maps to minimize uranium exposures in the Navajo Churchrock mining district. Environ. Health 2009, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Samuel-Nakamura, C.; Hodge, F.S.; Valentine, J.; Robbins, W. Heavy metals in Thelesperma megapotamicum. J. Toxicol. Environ. Health Sci. 2017, 9, 4–22. [Google Scholar] [CrossRef]
- Samuel-Nakamura, C.; Robbins, W.A.; Hodge, F.S. Uranium and Associated Heavy metals in Ovis aries in a Mining Impacted Area in Northwestern New Mexico. Int. J. Environ. Res. Public Health 2017, 14, 848. [Google Scholar] [CrossRef] [PubMed]
- Galal, T.M. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 2016, 188, 434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and transport of selenium in Yutanba, China: Impact of human activities. Sci. Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef]
- Ferriol, M.; Pićo, B. Pumpkin and winter squash. In Handbook of Plant Breeding: Vegetables I Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Carena, M.J., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2008; pp. 317–349. [Google Scholar]
- Paris, H.S. Summer squash. In Handbook of Plant Breeding: Vegetables I Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Carena, M.J., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2008. [Google Scholar]
- Hill, W.W. The Agriculture and Hunting Methods of the Navaho Indians; Yale University Press: New Haven, CT, USA, 1938. [Google Scholar]
- Wolfe, W.S.; Weber, C.W.; Dahozy-Arviso, K. Use and nutrient composition of traditional Navajo foods. Ecol. Food Nutr. 1985, 17, 323–344. [Google Scholar] [CrossRef]
- Lewis, J.; Hoover, J.; MacKenzie, D. Mining and environmental health disparities in Native American communities. Curr. Environ. Health Rep. 2017, 4, 130–141. [Google Scholar] [CrossRef]
- Harmon, M.E.; Lewis, J.; Miller, C.; Hoover, J.; Shuey, C.; Cajero, M.; Lucas, S.; Zychowski, K.; Pacheco, B.; Erdie, E.; et al. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 365–371. [Google Scholar] [CrossRef]
- Harmon, M.E.; Lewis, J.; Miller, C.; Hoover, J.; Ali, A.-M.S.; Shuey, C.; Cajero, M.; Lucas, S.; Pacheco, B.; Erdei, E.; et al. Arsenic association with circulating oxidized low-density lipoprotein in a native American community. J. Toxicol. Environ. Health A 2018, 81, 535–548. [Google Scholar] [CrossRef]
- Hoover, J.; Gonzales, M.; Shuey, C.; Barney, Y.; Lewis, J. Elevated arsenic and uranium contamination in unregulated water sources on the Navajo Nation, USA. Expo. Health 2017, 9, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Hoover, J.; Erdei, E.; Nash, J.; Gonzales, M. A review of metal exposure studies conducted in the rural southwestern and mountain region of the United States. Curr. Epidemiol. Rep. 2019, 6, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Erdei, E.; Rubin, R.L.; Miller, C.; Ducheneaux, C.; O’Leary, M.; Pacheco, B.; Mahler, M.; Henderson, P.N.; Pollard, M.K.; et al. Mercury, autoimmunity, and environmental factors on Cheyenne River Sioux Tribal lands. Autoimm. Dis. 2014. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-Operation and Development. Safety and Assessment of Transgenic Organisms in the Environment; OECD Consensus Documents; Organization for Economic Co-Operation and Development: Paris, France, 2016; Volume 5. [Google Scholar] [CrossRef]
- Diaz Obregon, D.; Lloja Lozano, L.; Carbajal Zuniga, V. Preclinical studies of Cucurbita maxima (pumpkin seeds) a traditional intestinal antiparasitic in rural urban areas. Rev. Gastroentrol. Peruv. 2004, 24, 323–327. [Google Scholar]
- Koike, K.; Li, W.; Liu, L.; Hata, E.; Nikaido, T. New phenolic glycosides from the seeds of Curcurbita moschata. Chem. Pharm. Bull. 2005, 53, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.C.; Pan, H.Y.; Deng, X.M.; Xiang, H.; Gao, H.Y.; Cai, H.; Wu, L.J. Cucurbitane and hexanorcucurbitane glycosides from the fruits of Cucurbita pepo cv dayangua. J. Asian Nat. Prod. Res. 2007, 9, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Wang, Q. D-chiro-inositol found in Cucurbita ficifolia (Cucurbitaceae) fruit extracts plays the hypoglycemic role in streptozocin-diabetic rats. J. Pharm. Pharmacol. 2006, 58, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Ashraf-Khorassani, M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef] [PubMed]
- Shokrzadeh, M.; Azadbakht, M.; Ahangar, N.; Hashemi, A.; Saeedi Saravi, S.S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacogn Mag. 2010, 6, 176–179. [Google Scholar] [CrossRef]
- Kurttio, P.; Harmoinen, A.; Saha, H.; Salonen, L.; Karpas, Z.; Komulainen, H.; Auvinen, A. Kidney toxicity of ingested uranium from drinking water. Am. J. Kidney Dis. 2006, 47, 972–982. [Google Scholar] [CrossRef]
- Kurttio, P.; Komulainen, H.; Leino, A.; Salonen, L.; Auvinen, A.; Saha, H. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ. Health Perspect. 2004, 113, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.M.; Taylor, S.K. Environmental uranium and human health. Rev. Environ. Health 1997, 12, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Hund, L.; Bedrick, E.J.; Miller, C.; Huerta, G.; Nez, T.; Ramone, S.; Shuey, C.; Cajero, M.; Lewis, J. A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. J. R. Stat. Soc. A 2015, 178, 1069–1091. [Google Scholar] [CrossRef]
- Gilman, A.P.; Villenueve, D.C.; Secours, V.E.; Yagminas, A.P.; Tracy, B.L.; Quinn, J.M.; Valli, V.E.; Willes, R.J.; Moss, M.A. Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat. Toxicol. Sci. 1998, 41, 117–128. [Google Scholar] [PubMed]
- Tracy, B.L.; Quinn, J.M.; Lahey, J.; Gilman, A.P.; Mancuso, K.; Yagminas, A.P.; Villenueve, D.C. Absorption and retention of uranium from drinking water by rats and rabbits. Health Phys. 1992, 62, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 2006, 137, 19–32. [Google Scholar] [CrossRef]
- Caldas, E.D.; Machado, L.L. Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem. Toxicol. 2004, 42, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Vanadium; US Department of Health and Human Services: Washington, DC, USA, 2012. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp58.pdf (accessed on 15 October 2015).
- Eisler, R. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic View; Report 12; Biological Report 85; U.S. Department of the Interior, Fish and Wildlife Service: Laurel, MD, USA, 1988. [Google Scholar]
- Van der Ent, A.; Baker, A.J.A.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2012, 362, 319–334. [Google Scholar] [CrossRef]
- Vinceti, M.; Cann, C.I.; Calzolari, E.; Vivoli, R.; Garavelli, V.; Bergomi, M. Reproductive outcomes in a population exposed long-term to inorganic selenium via drinking water. Sci. Total Environ. 2000, 250, 1–7. [Google Scholar] [CrossRef]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, lead, and other metals in relation to semen quality: Human evidence for molybdenum as a male reproductive toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanahban, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Grignard, E.; Gueguen, Y.; Grison, S.; Lobaccaro, J.M.A.; Gourmelon, P.; Souidi, M. In vivo effects of chronic contamination with 137 cesium on testicular and adrenal steroidogenesis. Arch. Toxicol. 2008, 82, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Thorium; ASTDR in Collaboration with the U.S. Environmental Protection Agency: Washington, DC, USA, 1990. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp147.pdf (accessed on 15 October 2015).
- Ornelas, I.J.; Deschenie, D.; Jim, J.; Bishop, S.; Lombard, K.; Beresford, S.A.A. Yéego Gardening! A community garden intervention to promote health on the Navajo Nation. Prog. Community Health Partnersh. Res. Educ. Action 2017, 11, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Setala, A.; Gittelsohn, J.; Speakman, K.; Oski, J.; Martin, T.; Moore, R.; Tohannie, M.; Bleich, S.N. Linking farmers to community stores to increase consumption of local produce: A case study of the Navajo Nation. Publ. Health Nutr. 2011, 14, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Setala, A.; Bleich, S.N.; Speakman, K.; Oski, J.; Martin, T.; Moore, R.; Tohannie, M.; Gittelsohn, J. The potential of local farming on the Navajo Nation to improve fruit and vegetable intake: Barriers and opportunities. Ecol. Food Nutr. 2011, 50, 393–409. [Google Scholar] [CrossRef]
- Avasarala, S.; Lichtner, P.C.; Ali, A.-M.S.; Gonzalez-Pinzon, R.; Blake, J.M.; Cerrato, J.M. Reactive transport of U and V from abandoned uranium mine waste. Environ. Sci. Technol. 2017, 51, 12385–12393. [Google Scholar] [CrossRef] [PubMed]
- GPS Pathfinder Office, Version 5.30; Trimble Navigation Limited: Westminster, CO, USA, 2012.
- IBM Corp. SPSS Statistics for Windows, Version 23; IBM Corp: Armonk, NY, USA, 2016. [Google Scholar]
- United States Environmental Protection Agency. Drinking Water Standards and Health Advisories Table. 2009. Available online: https://www3.epa.gov/region9/water/drinking/files/dwshat-v09.pdf (accessed on 15 May 2016).
- Navajo Nation Environmental Protection Agency. Navajo Nation Surface Water Quality Standards. 2007. Available online: https://www.epa.gov/sites/production/files/2014-12/documents/navajo-tribe.pdf (accessed on 6 January 2017).
- Joint Expert Committee on Food Additives Evaluation of Certain Food Additives and Contaminants. Thirty-Third Report of the Joint Food and Agriculture Organization (FAO)/World Health Organization (WHO) Expert Committee on Food Additives; WHO Technical Report Series No. 776; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Joint Expert Committee on Food Additives. Joint FAO/WHO Expert Committee on food additives. In Proceedings of the Sixty-First Meeting: Summary and Conclusions, Rome, Italy, 10–19 June 2003; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Food and Nutrition Board. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids; The National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Nabulo, G.; Oryem-Origa, H.; Diamond, M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M.; Stevanovic, D.; Iles, D.; Grubisic, M.; Milojkovic, J. The effect of the uranium content in the tailings on some cultivated plants. Water Air Soil Pollut. 2009, 200, 101–108. [Google Scholar] [CrossRef]
- Hakonson-Hayes, A.C.; Fresquez, P.R.; Whicker, F.W. Assessing potential risks from exposure to natural uranium in well water. J. Environ. Radioact. 2002, 59, 29–40. [Google Scholar] [CrossRef]
- Sękara, A.; Poniedziałek, M.; Ciura, J.; Jędrszczyk, E. Cadmium and lead accumulation and distribution in the organs of nine crops: Implications for phytoremediation. Pol. J. Environ. Stud. 2005, 14, 509–516. [Google Scholar]
- Uchida, S.; Tagami, K.; Hirai, K.; Ikuko, H. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides (1) upland field crops collected in Japan. J. Nucl. Sci. Technol. 2007, 44, 628–640. [Google Scholar] [CrossRef]
- Fresquez, P.R.; Armstrong, D.R.; Mullen, M.A.; Naranjo, L. The uptake of radionuclides by beans, squash, and corn growing in contaminated alluvial soils at Los Alamos national laboratory. J. Environ. Sci. Health B 1998, 33, 99–122. [Google Scholar] [CrossRef]
- Shahandeh, H.; Hossner, R. Role of soil properties in phytoaccumulation or uranium. Water Air Soil Pollut. 2002, 141, 165–180. [Google Scholar] [CrossRef]
- Tano, M.L. Interrelationships among Native peoples, genetic research, and the landscape: Need for further research into ethical, legal, and social issues. J. Law Med. Ethics 2006, 34, 301–309. [Google Scholar] [CrossRef]
- Navajo Nation Environmental Protection Agency. Guideline for Hauling and Transporting for Human Consumption. 2013. Available online: http://www.navajopublicwater.org/Guideline4Hauling-Transporting_RegulatedWater4HumanConsumption.pdf (accessed on 1 October 2015).
- Huang, S.; Jin, J. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2008, 139, 317–327. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, E.; He, B.; Jiang, G. Arsenic species and leaching characteristics in tea (Camellia sinensis). Food Chem. Toxicol. 2007, 45, 2381–2389. [Google Scholar] [CrossRef]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Ciênc. Saúde Coletiva 2011, 16, 2587–2602. [Google Scholar] [CrossRef]
- Bendich, A. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Nutrition 2001, 17, 364. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Johnson, L.J.; Meacham, S.L.; Kruskall, L.J. The antioxidants-Vitamin C, Vitamin E, selenium, and carotenoids. J. Agromed. 2003, 9, 65–82. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Lopez-Martinez, M.C. Essentiality of selenium in the human body: Relationship with different diseases. Sci. Total Environ. 2000, 249, 347–371. [Google Scholar] [CrossRef]
- Chambers, J.C.; Sidle, R.C. Fate of heavy metals in an abandoned lead-zinc tailings pond: I. vegetation. J. Environ. Qual. 1991, 20, 745–751. [Google Scholar] [CrossRef]
Metal(loid) | Irrigation Water (Mean ± Standard Deviation, μg/L, n = 4) | Maximum Contaminant Levels (MCLs) | % Above or Below MCLs |
---|---|---|---|
As | 3.80 ± 0.69 | 10 a | 38 |
Cd | 44.73 ± 3.77 | 5 a | 895 |
Cs | 0.46 ± 0.10 | b | b |
Pb | 16.18 ± 2.68 | 15 a | 108 |
Mo | 1358.07 ± 125.79 | b | b |
Se | 21.81 ± 11.34 | 50 a | 43.6 |
Th | ng | b | b |
U | 7.03 ± 6.12 | 30 a,c | 23.4 |
V | 26.44 ± 0.61 | b | b |
Metal(loid) | Squash Fruit (Mean ± Standard Deviation, mg/kg, n = 12 *) | Squash Root (Mean ± Standard Deviation, mg/kg, n = 4 *) | Squash Leaves (Mean ± Standard Deviation, mg/kg, n = 6 *) | Soil (Mean ± Standard Deviation, mg/kg, n = 14 *) |
---|---|---|---|---|
As | 0.116 ± 0.086 | 0.327 ± 0.0000 c | 0.243 ± 0.014 | 1.96 ± 0.66 |
Cd | 0.020 ± 0.008 b | 0.029 ± 0.000 c | 0.100 ± 0.036 | 0.53 ± 0.29 |
Cs | 0.069 ± 0.039 | 0.136 ± 0.129 | 0.112 ± 0.091 | 1.78 ± 1.07 |
Pb | 0.248 ± 0.092 | 8.90 ± 17.13 | 0.450 ± 0.165 | 6.89 ± 0.85 |
Mo | 0.170 ± 0.041 a | 0.132 ± 0.0134 c | 0.203 ± 0.056 | 8.42 ± 5.69 |
Se | 0.354 ± 0.133 b | 0.160 ± 0.0898 c | 1.26 ± 0.52 | 5.98 ± 2.62 d |
Th | 0.049 ± 0.042 a | 0.121 ± 0.062 | 0.246 ± 0.110 | 3.84 ± 0.63 |
U | 0.006 ± 0.006 | 0.035 ± 0.021 | 0.023 ± 0.010 | 1.01 ± 0.58 |
V | 0.054 ± 0.021 | 1.14 ± 0.79 | 0.607 ± 0.325 | 21.27 ± 11.22 |
Metal(loid) | Plot Production < 5 Years (mg/kg, n = 6) | Plot Production > 30 Years (mg/kg, n = 8) | p |
---|---|---|---|
As | 1.33 ± 0.10 | 2.43 ± 0.44 | <0.001 |
Cd | 0.32 ± 0.33 | 0.69 ± 0.12 | <0.05 |
Cs | 1.01 ± 0.20 | 2.36 ± 1.10 | <0.05 |
Pb | 6.98 ± 0.61 | 6.82 ± 1.04 | >0.05 |
Mo | 4.40 ± 6.59 | 11.44 ± 2.19 | <0.05 |
Se | 5.98 ± 2.62 | ng | >0.05 |
Th | 3.45 ± 0.29 | 4.14 ± 0.67 | <0.05 |
U | 0.52 ± 0.07 | 1.38 ± 0.51 | <0.01 |
V | 11.59 ± 2.14 | 28.53 ± 9.49 | <0.001 |
Metal(loid) * | Weekly Intake (μg/kg of BW a) | PTWI (μg/kg of BW a) | % Below the PTWI |
---|---|---|---|
As | 5.14 | 15 | 34.3 |
Cd | 0.87 | 7 | 12.4 |
Pb | 11.06 | 25 | 44.2 |
Metal(loid) * | Daily Intake (μg) | RDI, RDA or UL (μg/Day) | % Below the RDI, RDA or UL |
---|---|---|---|
Mo | 9.27 | RDA: 45 UL: 2000 | RDA: 20.6 UL: 0.46 |
Se | 19.27 | RDI: 55 UL: 400 | RDI: 35.04 UL: 4.8 |
V | 2.93 | UL: 1800 | UL: 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samuel-Nakamura, C.; Hodge, F.S.; Sokolow, S.; Ali, A.-M.S.; Robbins, W.A. Metal(loid)s in Cucurbita pepo in a Uranium Mining Impacted Area in Northwestern New Mexico, USA. Int. J. Environ. Res. Public Health 2019, 16, 2569. https://doi.org/10.3390/ijerph16142569
Samuel-Nakamura C, Hodge FS, Sokolow S, Ali A-MS, Robbins WA. Metal(loid)s in Cucurbita pepo in a Uranium Mining Impacted Area in Northwestern New Mexico, USA. International Journal of Environmental Research and Public Health. 2019; 16(14):2569. https://doi.org/10.3390/ijerph16142569
Chicago/Turabian StyleSamuel-Nakamura, Christine, Felicia S. Hodge, Sophie Sokolow, Abdul-Mehdi S. Ali, and Wendie A. Robbins. 2019. "Metal(loid)s in Cucurbita pepo in a Uranium Mining Impacted Area in Northwestern New Mexico, USA" International Journal of Environmental Research and Public Health 16, no. 14: 2569. https://doi.org/10.3390/ijerph16142569