Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas
Abstract
1. Introduction
2. Materials and Methods
2.1. Air Dispersion Modeling
2.2. Spatial Interpolation
2.3. Location Allocation
2.4. Exposure Assessment
3. Case Study
4. Results
4.1. Exposure to Traffic-Related PM2.5 across Different Microenvironments
4.2. Static and Dynamic Exposure
5. Limitations of the Modeling Framework
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Health Effects Institute Panel on the Health Effects of Traffic-Related Air Pollution: Boston, MA, USA, 2010. [Google Scholar]
- Harrison, R.M.; Tilling, R.; Romero, M.S.C.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Reponen, T.; Grinshpun, S.A.; Trakumas, S.; Martuzevicius, D.; Wang, Z.M.; LeMasters, G.; Lockey, J.E.; Biswas, P. Concentration gradient patterns of aerosol particles near Interstate highways in the Greater Cincinnati airshed. J. Environ. Monit. 2003, 5, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Pirjola, L.; Paasonen, P.; Pfeiffer, D.; Hussein, T.; Hämeri, K.; Koskentalo, T.; Virtanen, A.; Rönkkö, T.; Keskinen, J.; Pakkanen, T.A.; et al. Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmos. Environ. 2006, 40, 867–879. [Google Scholar] [CrossRef]
- Wilhelm, M.; Ritz, B. Residential proximity to traffic and adverse birth outcomes in Los Angeles county, California, 1994–1996. Environ. Health Perspect. 2003, 111, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; von Klot, S.; Heier, M.; Trentinaglia, I.; Hormann, A.; Wichmann, H.E.; Lowel, H. Exposure to traffic and the onset of myocardial infarction. N. Engl. J. Med. 2004, 351, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ. Sci. Technol. 2003, 37, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Litonjua, A.; Suh, H.; Verrier, M.; Zanobetti, A.; Syring, M.; Nearing, B.; Verrier, R.; Stone, P.; MacCallum, G.; et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 2005, 60, 455–461. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xue, X.; Sun, M.; Han, B.; Li, C.; Ma, J.; Yu, H.; Sun, Z.; Zhao, L.; et al. Long-term exposure to high particulate matter pollution and cardiovascular mortality: A 12-year cohort study in four cities in northern China. Environ. Int. 2014, 62, 41–47. [Google Scholar] [CrossRef]
- Diaz-Robles, L.; Fu, J.; Reed, G. Emission scenarios and the health risks posed by priority mobile air toxics in an urban to regional area: An application in Nashville, Tennessee. Aerosol Air Qual. Res. 2013, 13, 795–803. [Google Scholar] [CrossRef]
- Hooven, E.H.V.D.; Pierik, F.H.; De Kluizenaar, Y.; Willemsen, S.P.; Hofman, A.; Van Ratingen, S.W.; Zandveld, P.Y.; MacKenbach, J.P.; Steegers, E.A.; Miedema, H.M.; et al. Air Pollution Exposure During Pregnancy, Ultrasound Measures of Fetal Growth, and Adverse Birth Outcomes: A Prospective Cohort Study. Environ. Health Perspect. 2011, 120, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, I.; Garcia-Esteban, R.; Iniguez, C.; Nieuwenhuijsen, M.J.; Rodriguez, A.; Paez, M.; Ballester, F.; Sunyer, J. Prenatal exposure to traffic-related air pollution and ultrasound measures of fetal growth in the INMA Sabadell cohort. Environ. Health Perspect. 2010, 118, 705–711. [Google Scholar] [CrossRef]
- Slama, R.; Morgenstern, V.; Cyrys, J.; Zutavern, A.; Herbarth, O.; Wichmann, H.-E.; Heinrich, J. Traffic-related atmospheric pollutants levels during pregnancy and offspring’s term birth weight: A study relying on a land-use regression exposure model. Environ. Health Perspect. 2007, 115, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Klein, M.; Sarnat, J.A.; Flanders, W.D.; Waller, L.A.; Mulholland, J.A.; Russell, A.G.; Tolbert, P.E. An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hao, J.; Ho, M.S.; Li, J.; Lu, Y. Intake fractions of industrial air pollutants in China: Estimation and application. Sci. Total Environ. 2006, 354, 127–141. [Google Scholar] [CrossRef]
- Zhou, Y.; Levy, J.I.; Evans, J.S.; Hammitt, J.K. The influence of geographic location on population exposure to emissions from power plants throughout China. Environ. Int. 2006, 32, 365–373. [Google Scholar] [CrossRef]
- Sapkota, A.; Chelikowsky, A.P.; Nachman, K.E.; Cohen, A.J.; Ritz, B. Exposure to particulate matter and adverse birth outcomes: A comprehensive review and meta-analysis. Air Qual. Atmos. Health 2012, 5, 369–381. [Google Scholar] [CrossRef]
- Shah, P.S.; Balkhair, T. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef]
- Cook, R.; Isakov, V.; Touma, J.S.; Benjey, W.; Thurman, J.; Kinnee, E.; Ensley, D. Resolving local-scale emissions for modeling air quality near roadways. J. Air Waste Manag. Assoc. 2008, 58, 451–461. [Google Scholar] [CrossRef]
- Corburn, J. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale. Environ. Impact Assess. Rev. 2007, 27, 145–160. [Google Scholar] [CrossRef]
- Beckx, C.; Panis, L.I.; Vankerkom, J.; Janssens, D.; Wets, G.; Arentze, T. An integrated activity-based modelling framework to assess vehicle emissions: Approach and application. Environ. Plan. B Plan. Des. 2009, 36, 1086–1102. [Google Scholar] [CrossRef]
- Dhondt, S.; Beckx, C.; Degraeuwe, B.; Lefebvre, W.; Kochan, B.; Bellemans, T.; Panis, L.I.; Macharis, C.; Putman, K. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates. Environ. Impact Assess. Rev. 2012, 36, 42–51. [Google Scholar] [CrossRef]
- Piechocki-Minguy, A.; Plaisance, H.; Schadkowski, C.; Sagnier, I.; Saison, J.Y.; Galloo, J.C.; Guillermo, R. A case study of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler. Sci. Total Environ. 2006, 366, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Shabanpour, R.; Javanmardi, M.; Fasihozaman Langerudi, M.; Mohammadian, A.K. Analyzing Impacts of Individuals’ Travel Behavior on Air Pollution: Integration of a Dynamic Activity-Based Travel Demand Model with Dynamic Traffic Assignment and Emission Models. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Shabanpour, R.; Golshani, N.; Fasihozaman Langerudi, M.; Javanmardi, M.; Mohammadian, A.K. Modeling Type and Duration of In-home Activities in ADAPTS Activity-based Framework. In Proceedings of the 96th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Kornartit, C.; Sokhi, R.S.; Burton, M.A.; Ravindra, K. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ. Int. 2010, 36, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Shekarrizfard, M.; Faghih-Imani, A.; Hatzopoulou, M. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environ. Res. 2016, 147, 435–444. [Google Scholar] [CrossRef]
- Son, J.-Y.; Bell, M.L.; Lee, J.-T. Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches. Environ. Res. 2010, 110, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef]
- Cimorellia, A.J.; Perryb, S.G.; Venkatramc, A.; Weild, J.C.; Painee, R.J.; Wilsonf, R.B.; Leeg, R.F.; Petersh, W.D.; Brode, R.W. AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. J. Appl. Meteorol. 2005, 44, 682–693. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Kota, S.H.; Vallamsundar, S.; Zietsman, J.; Ying, Q. AERMOD for near-road pollutant dispersion: Evaluation of model performance with different emission source representations and low wind options. Transp. Res. Part D Transp. Environ. 2017, 57, 392–402. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Air pollution exposure assessment methods utilized in epidemiological studies. J. Environ. Monit. 2009, 11, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Beckx, C.; Arentze, T.; Wets, G.; Panis, L. Using an Activity-Based Framework to Determine Effects of a Policy Measure on Population Exposure to Nitrogen Dioxide. Transp. Res. Rec. J. Transp. Res. Board 2011, 2233, 72–79. [Google Scholar] [CrossRef]
- Hatzopoulou, M.; Hao, J.Y.; Miller, E.J. Simulating the impacts of household travel on greenhouse gas emissions, urban air quality, and population exposure. Transportation 2011, 38, 871–887. [Google Scholar] [CrossRef]
- Lefebvre, W.; Degrawe, B.; Beckx, C.; Vanhulsel, M.; Kochan, B.; Bellemans, T.; Janssens, D.; Wets, G.; Janssen, S.; de Vlieger, I.; et al. Presentation and evaluation of an integrated model chain to respond to traffic- and health-related policy questions. Environ. Model. Softw. 2013, 40, 160–170. [Google Scholar] [CrossRef]
- Jedrychowski, W.A.; Perera, F.P.; Pac, A.; Jacek, R.; Whyatt, R.M.; Spengler, J.D.; Dumyahn, T.S.; Sochacka-Tatara, E. Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources Krakow study in pregnant women. Sci. Total Environ. 2006, 366, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Nethery, E.; Brauer, M.; Janssen, P. Time-activity patterns of pregnant women and changes during the course of pregnancy. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 317–324. [Google Scholar] [CrossRef]
- Valero, N.; Aguilera, I.; Llop, S.; Esplugues, A.; de Nazelle, A.; Ballester, F.; Sunyer, J. Concentrations and determinants of outdoor, indoor and personal nitrogen dioxide in pregnant women from two Spanish birth cohorts. Environ. Int. 2009, 35, 1196–1201. [Google Scholar] [CrossRef]
- Wu, J.; Wilhelm, M.; Chung, J.; Ritz, B. Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study. Environ. Res. 2011, 111, 685–692. [Google Scholar] [CrossRef]
- Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; et al. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring. Environ. Health Perspect. 2008, 116, 1509–1518. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jiang, C.; Jaimes, G.; Bartell, S.; Dang, A.; Baker, D.; Delfino, R.J. Travel patterns during pregnancy: Comparison between Global Positioning System (GPS) tracking and questionnaire data. Environ. Health 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Forrest, T.; Pearson, D. Comparison of Trip Determination Methods in Household Travel Surveys Enhanced by a Global Positioning System. Transp. Res. Rec. 2005, 1917, 63–71. [Google Scholar] [CrossRef]
- Stopher, P.; FitzGerald, C.; Zhang, J. Search for a global positioning system device to measure person travel. Transp. Res. Part C Emerg. Technol. 2008, 16, 350–369. [Google Scholar] [CrossRef]
- Korten, I.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Paediatr. Respir. Rev. 2017, 21, 38–46. [Google Scholar] [CrossRef]
- Turner, D.B. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 1994. [Google Scholar]
- US. Geological Survey (USGS). Land Use Database. Available online: https://landcover.usgs.gov/ (accessed on 25 October 2016).
- Robichaud, A.; Ménard, R. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models. Atmos. Chem. Phys. 2014, 14, 1769–1800. [Google Scholar] [CrossRef]
- Liu, K.; Hung, M.; Kuo, J.; Liang, H. Using GIS and Kriging to Analyze the Spatial Distributions of the Health Risk of Indoor Air Pollution. J. Geosci. Environ. Prot. 2015, 3, 20–25. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous US. and a Real-Time Web Application. Int. J. Environ. Res. Public Health 2016, 13, 749. [Google Scholar] [CrossRef]
- Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol. 2008, 28, 947–959. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- de Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput. Geosci. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Piltner, R. An Application of a Shape Function Based Spatiotemporal Interpolation Method to Ozone and Population-Based Environmental Exposure in the Contiguous US. J. Environ. Inform. 2008, 12, 120–128. [Google Scholar] [CrossRef]
- Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.; Martin, O. Lightweight UAV with on-board photogrammetry and single-frequency GPS positioning for metrology applications. ISPRS J. Photogramm. Remote Sens. 2017, 127, 115–126. [Google Scholar] [CrossRef]
- Chen, S.; Bekhor, S.; Yuval; Broday, D.M. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions. Atmos. Environ. 2016, 142, 351–359. [Google Scholar] [CrossRef]
- Duan, N. Models for human exposure to air pollution. Environ. Int. 1982, 8, 305–309. [Google Scholar] [CrossRef]
- Ott, W.R. Concepts of human exposure to air pollution. Environ. Int. 1982, 7, 179–196. [Google Scholar] [CrossRef]
- Klepeis, N. Modeling human exposure to air pollution. In Human Exposure Analysi; Ott, W., Wallace, L., Steinemann, A., Eds.; CRC Press: BocaRaton, FL, USA, 2006; pp. 1–18. [Google Scholar]
- Vallamsundar, S.; Lin, J.; Konduri, K.; Zhou, X.; Pendyala, R.M. A comprehensive modeling framework for transportation-induced population exposure assessment. Transp. Res. Part D Transp. Environ. 2016, 46, 94–113. [Google Scholar] [CrossRef]
- Du, X.; Wu, Y.; Fu, L.; Wang, S.; Zhang, S.; Hao, J. Intake fraction of PM2.5 and NOX from vehicle emissions in Beijing based on personal exposure data. Atmos. Environ. 2012, 57, 233–243. [Google Scholar] [CrossRef]
- Kingham, S.; Briggs, D.; Elliott, P.; Fischer, P.; Erik, L. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmos. Environ. 2000, 34, 905–916. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S.A. Time allocation shifts and pollutant exposure due to traffic congestion: An analysis using the national human activity pattern survey. Sci. Total Environ. 2009, 407, 5493–5500. [Google Scholar] [CrossRef]
- Johannesson, S.; Gustafson, P.; Molnar, P.; Barregard, L.; Sallsten, G. Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population: Personal, indoor, and outdoor levels. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L. Indoor Particles: A Review. J. Air Waste Manag. Assoc. 1996, 46, 98–126. [Google Scholar] [CrossRef] [PubMed]
- Turpin, B.J.; Weisel, C.P.; Morandi, M.; Colome, S.; Stock, T.; Eisenreich, S.; Buckley, B. Relationships of Indoor, Outdoor, and Personal Air (RIOPA): Part II. Analyses of concentrations of particulate matter species. Res. Rep. Health Eff. Inst. 2007, 130, 1–77. [Google Scholar]
- Marshall, J.D.; Teoh, S.-K.; Nazaroff, W.W. Intake fraction of nonreactive vehicle emissions in US urban areas. Atmos. Environ. 2005, 39, 1363–1371. [Google Scholar] [CrossRef]
- Carrillo, G.; Perez Patron, M.J.; Johnson, N.; Zhong, Y.; Lucio, R.; Xu, X. Asthma prevalence and school-related hazardous air pollutants in the US-México border area. Environ. Res. 2018, 162, 41–48. [Google Scholar] [CrossRef] [PubMed]
- TxDOT. Transportation Planning Maps—District Traffic Maps for TxDOT’s 25 districts for calendar year 2014. Available online: https://www.txdot.gov/inside-txdot/division/transportation-planning/maps/urban-2014.html (accessed on 25 September 2016).
- Texas Commission on Environmental Quality. 2014 On-Road Mobile Source Annual, Summer Weekday and Winter Workday Emissions Inventories; Texas Commission on Environmental Quality: Austin, TX, USA, 2015. [Google Scholar]
- Zamora, M.L.; Pulczinski, J.C.; Johnson, N.; Garcia-Hernandez, R.; Rule, A.; Carrillo, G.; Zietsman, J.; Sandragorsian, B.; Vallamsundar, S.; Askariyeh, M.H.; et al. Maternal exposure to PM2.5 in south Texas, a pilot study. Sci. Total Environ. 2018, 628–629, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Karner, A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality-Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Sioutas, C. Concentration and size distribution of ultrafine particles near a major highway. J. Air Waste Manag. Assoc. 2002, 52, 1032. [Google Scholar] [CrossRef]
Studies on Buildings | I/O Ratio |
[64] | 0.88 |
[65] | 0.73 |
[66] | 0.84 |
[67] | 1.06 |
[68] | 0.67 |
[69] | 0.995 |
Studies on Vehicles | I/O Ratio |
[64] | 0.85 |
[66] | 2 |
[70] | 0.76 |
[7] | 2.68 |
Micro- Environment | Traffic-Related PM2.5 Mass-to-Time Ratio | Traffic-Related PM2.5 Daily Mean (µg/m3) | Traffic-Related PM2.5 Standard Deviation | Range (µg/m3) |
---|---|---|---|---|
Indoor | 0.91 | 0.29 | 0.21 | 0.02–0.92 |
Outdoor | 1.45 | 0.26 | 0.27 | 0.00–1.61 |
Driving | 1.96 | 0.56 | 0.55 | 0.04–2.26 |
Total | 0.32 | 0.22 | 0.02–1.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askariyeh, M.H.; Vallamsundar, S.; Zietsman, J.; Ramani, T. Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas. Int. J. Environ. Res. Public Health 2019, 16, 2433. https://doi.org/10.3390/ijerph16132433
Askariyeh MH, Vallamsundar S, Zietsman J, Ramani T. Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas. International Journal of Environmental Research and Public Health. 2019; 16(13):2433. https://doi.org/10.3390/ijerph16132433
Chicago/Turabian StyleAskariyeh, Mohammad Hashem, Suriya Vallamsundar, Josias Zietsman, and Tara Ramani. 2019. "Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas" International Journal of Environmental Research and Public Health 16, no. 13: 2433. https://doi.org/10.3390/ijerph16132433
APA StyleAskariyeh, M. H., Vallamsundar, S., Zietsman, J., & Ramani, T. (2019). Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas. International Journal of Environmental Research and Public Health, 16(13), 2433. https://doi.org/10.3390/ijerph16132433