Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association of PM10 and Greenness with Cause-Specific Mortality
3.3. Interactions Between PM10 and Greenness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. EHP 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. (1995) 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Fong, K.C.; Hart, J.E.; James, P. A Review of Epidemiologic Studies on Greenness and Health: Updated Literature Through 2017. Curr. Environ. Health Rep. 2018, 5, 77–87. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martinez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasencia, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Henderson, K.A. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leis. Sci. 2007, 29, 315–354. [Google Scholar] [CrossRef]
- Sugiyama, T.; Giles-Corti, B.; Summers, J.; du Toit, L.; Leslie, E.; Owen, N. Initiating and maintaining recreational walking: A longitudinal study on the influence of neighborhood green space. Prev. Med. 2013, 57, 178–182. [Google Scholar] [CrossRef]
- Maas, J.; van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Garling, T. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.A.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and Mortality in 207 US Cities Modification by Temperature and City Characteristics. Epidemiology 2016, 27, 221–227. [Google Scholar] [PubMed]
- De Keijzer, C.; Agis, D.; Ambros, A.; Arevalo, G.; Baldasano, J.M.; Bande, S.; Barrera-Gomez, J.; Benach, J.; Cirach, M.; Dadvand, P.; et al. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study. Environ. Int. 2017, 99, 170–176. [Google Scholar] [CrossRef]
- MacNaughton, P.; Eitland, E.; Kloog, I.; Schwartz, J.; Allen, J. Impact of Particulate Matter Exposure and Surrounding “Greenness” on Chronic Absenteeism in Massachusetts Public Schools. Int. J. Environ. Res. Public Health 2017, 14, 207. [Google Scholar] [CrossRef]
- Statistics Korea. Statistics of Urban Plan. Available online: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01&parentId=H.1;H1.2;315_31502.3;#SelectStatsBoxDiv (accessed on 3 March 2019).
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Richardson, E.A.; Mitchell, R. Gender differences in relationships between urban green space and health in the United Kingdom. Soc. Sci. Med (1982) 2010, 71, 568–575. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). Available online: http://earthobservatory.nasa.gov/Features/MeasuringVegetation (accessed on 3 March 2019).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Commun. Health 2006, 60, 7–12. [Google Scholar] [CrossRef]
- Winkleby, M.A.; Jatulis, D.E.; Frank, E.; Fortmann, S.P. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 1992, 82, 816–820. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, M.H. Health inequalities in Korea: Current conditions and implications. J. Prev. Med. Public Health 2007, 40, 431–438. [Google Scholar] [CrossRef]
- OECD Health Statistics. Available online: https://www.oecd-ilibrary.org/content/data/data-00541-en (accessed on 5 May 2019).
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Sorensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjonneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef]
- Song, Q.K.; Christiani, D.C.; Wang, X.R.; Ren, J. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2014, 11, 11822–11832. [Google Scholar] [CrossRef]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More than a Million Adults in Rome. EHP 2013, 121, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Dimakopoulou, K.; Samoli, E.; Beelen, R.; Stafoggia, M.; Andersen, Z.J.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P.; Xun, W.; et al. Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project. Am. J. Respir. Crit. Care Med. 2014, 189, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.L.; Pinault, L.; Balram, A.; Hystad, P.; Peters, P.A.; Chen, H.; van Donkelaar, A.; Martin, R.V.; Menard, R.; Robichaud, A.; et al. Urban greenness and mortality in Canada’s largest cities: A national cohort study. Lancet Planet. Health 2017, 1, e289–e297. [Google Scholar] [CrossRef]
- Lipsitch, M.; Tchetgen, E.T.; Cohen, T. Negative Controls A Tool for Detecting Confounding and Bias in Observational Studies. Epidemiology 2010, 21, 383–388. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Gree. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Riviere, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Gree. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Lodovici, M.; Bigagli, E. Oxidative stress and air pollution exposure. J. Toxicol. 2011, 2011, 487074. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Kimura, H.; Kon, N.; Furukawa, S.; Mukaida, M.; Yamakura, F.; Matsumoto, K.; Sone, H.; Murakami-Murofushi, K. Effect of endurance exercise training on oxidative stress in spontaneously hypertensive rats (SHR) after emergence of hypertension. Clin. Exp. Hypertens. 2010, 32, 407–415. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef]
- Pedersen, B.K. The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays Biochem. 2006, 42, 105–117. [Google Scholar] [CrossRef]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef]
- Carinanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 2011, 101, 205–214. [Google Scholar] [CrossRef]
- Jianan, X.; Zhiyun, O.; Hua, Z.; Xiaoke, W.; Hong, M. Allergenic pollen plants and their influential factors in urban areas. J. Acta Ecologica. Sinica. 2007, 27, 3820–3827. [Google Scholar] [CrossRef]
- Ghiani, A.; Aina, R.; Asero, R.; Bellotto, E.; Citterio, S. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 2012, 67, 887–894. [Google Scholar] [CrossRef]
- Lierl, M.B.; Hornung, R.W. Relationship of outdoor air quality to pediatric asthma exacerbations. Annals of allergy, asthma & immunology. Ann. Allergy Asthma Immunol. 2003, 90, 28–33. [Google Scholar]
- Lohmus, M.; Balbus, J. Making green infrastructure healthier infrastructure. Infect. Ecol. Epidemiol. 2015, 5, 30082. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Urban Green Spaces and Health: A Review of Evidence. 2016. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/urban-health/publications/2016/urban-green-spaces-and-health-a-review-of-evidence-2016 (accessed on 5 May 2019).
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random measurement error and regression dilution bias. BMJ 2010, 340, c2289. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Saelens, B.E.; Powell, K.E.; Chapman, J.E. Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Soc. Sci. Med. 2007, 65, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Woosnam, K.M.; Marcouiller, D.W.; Aleshinloye, K.D.; Choi, Y. Residential mobility, urban preference, and human settlement: A South Korean case study. Habitat Int. 2015, 49, 497–507. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28 (Suppl. 2), 159–168. [Google Scholar] [CrossRef] [PubMed]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: how important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28 (Suppl. 2), 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E. Association of park size, distance, and features with physical activity in neighborhood parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean | Median | Standard Deviation | 25th–75th Percentile |
---|---|---|---|---|
PM10 (μg/m3) | 47.65 | 47.13 | 6.48 | 43.00–51.88 |
NDVI | 0.48 | 0.48 | 0.13 | 0.38–0.58 |
Percentage of adults with low education (%) | 14.13 | 13.59 | 4.76 | 11.09–16.39 |
Smoking rate (%) | 23.97 | 24.00 | 2.90 | 22.1–25.9 |
Health care resource index | 0.00 | −0.75 | 2.70 | −1.60–0.54 |
Standardized mortality rates (per 100,000) | ||||
Non-accidental | 336.42 | 334.05 | 50.65 | 299.73–371.13 |
Cardiovascular disease | 85.08 | 83.93 | 22.27 | 67.05–101.06 |
Ischemic heart disease | 21.08 | 19.86 | 7.16 | 15.96–24.98 |
Respiratory disease | 28.14 | 28.16 | 6.59 | 23.40–32.15 |
Chronic lower respiratory disease | 8.90 | 8.41 | 3.78 | 6.00–11.13 |
Lung cancer | 22.90 | 22.65 | 4.29 | 20.11–25.54 |
Single-Exposure Model a,b | Two-Exposure Model a,b | |
---|---|---|
Percent Increase (95% Confidence Interval) | Percent Increase (95% Confidence Interval) | |
Non-accidental | ||
PM10 (per 10 μg/m3) | 4.50% (3.42%, 5.58%) | 4.49% (3.41%, 5.57%) |
NDVI (per IQR) c | −0.59% (−1.85%, 0.69%) | −0.40% (−1.59%, 0.81%) |
Cardiovascular disease | ||
PM10 (per 10 μg/m3) | 9.75% (7.67%, 11.86%) | 9.70% (7.64%, 11.81%) |
NDVI (per IQR) c | −2.89% (−5.18%, −0.53%) | −2.56% (−4.68%, −0.39%) |
Ischemic heart disease | ||
PM10 (per 10 μg/m3) | 7.5%9 (4.28%, 11.00%) | 7.50% (4.19%, 10.90%) |
NDVI (per IQR) c | −3.64% (−7.08%, −0.06%) | −3.45% (−6.84%, 0.07%) |
Respiratory disease | ||
PM10 (per 10 μg/m3) | −3.23% (−5.46%, −0.96%) | −3.12% (−5.36%, −0.83%) |
NDVI (per IQR) c | 1.85% (−0.76%, 4.52%) | 1.53% (−1.07%, 4.19%) |
Chronic lower respiratory disease | ||
PM10 (per 10 μg/m3) | 16.13% (11.52%, 20.92%) | 16.03% (11.42%, 20.85%) |
NDVI (per IQR) c | −3.75% (−8.50%, 1.24%) | −3.41% (−7.97%, 1.39%) |
Lung cancer | ||
PM10 (per 10 μg/m3) | 2.93% (0.87%, 5.03%) | 2.98% (0.92%, 5.08%) |
NDVI (per IQR) c | 1.10% (−1.22%, 3.47%) | 1.25% (−1.06%, 3.62%) |
Non-Accidental | Cardio Vascular Disease | Ischemic Heart Disease | Respiratory Disease | Chronic Lower Respiratory Disease | Lung Cancer | |
---|---|---|---|---|---|---|
Greenness a | ||||||
High | 5.83% (3.95%, 7.74%) | 7.46% (3.97%, 11.07%) | 1.89% (−4.51%, 8.72%) | −1.27% (−5.12%, 2.73%) | 20.88% (12.54%, 29.82%) | 4.32% (0.19%, 8.62%) |
Medium | 3.57% (1.81%, 5.37%) | 8.56% (5.05%, 12.18%) | 6.73% (1.58%, 12.13%) | −3.14% (−6.78%, 0.64%) | 14.09% (6.73%, 21.95%) | 1.51% (−1.56%, 4.67%) |
Low | 3.45% (1.42%, 5.51%) | 11.23% (7.28%, 15.32%) | 7.86% (1.52%, 14.60%) | −9.23% (−12.83%, −5.47%) | 11.20% (1.57%, 21.74%) | 4.34% (0.26%, 8.59%) |
p-value for interaction b | 0.01 | 0.67 | 0.10 | 0.18 | 0.47 | 0.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, H.; Lee, J.-T. Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. Int. J. Environ. Res. Public Health 2019, 16, 1866. https://doi.org/10.3390/ijerph16101866
Kim S, Kim H, Lee J-T. Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. International Journal of Environmental Research and Public Health. 2019; 16(10):1866. https://doi.org/10.3390/ijerph16101866
Chicago/Turabian StyleKim, Sera, Honghyok Kim, and Jong-Tae Lee. 2019. "Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016" International Journal of Environmental Research and Public Health 16, no. 10: 1866. https://doi.org/10.3390/ijerph16101866
APA StyleKim, S., Kim, H., & Lee, J.-T. (2019). Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. International Journal of Environmental Research and Public Health, 16(10), 1866. https://doi.org/10.3390/ijerph16101866