Relationship between Serum Omega-3 Fatty Acid and Asthma Endpoints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population and Sampling
2.2. Health Outcome Measurements
2.2.1. Questionnaire
2.2.2. Skin Prick Tests
2.2.3. Analysis of Serum Total Phospholipid Fatty Acid Composition
2.2.4. Spirometry
2.2.5. Methacholine Challenge Testing
2.3. Definitions
2.3.1. Predictor Variables
2.3.2. Asthma-Related Endpoints of Interest
2.3.3. Covariates
2.4. Data Analysis
3. Results
3.1. Serum Fatty Acid Profile
3.2. Asthma Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mickleborough, T.D.; Lindley, M.R. Omega-3 fatty acids: A potential future treatment for asthma? Expert Rev. Respir. Med. 2013, 7, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Forum of International Respiratory Societies. The Global Impact of Respiratory Disease, 2nd ed.; European Respiratory Society: Sheffield, UK, 2017. [Google Scholar]
- Yang, H.; Xun, P.; He, K. Fish and fish oil intake in relation to risk of asthma: A systematic review and meta-analysis. PLoS ONE 2013, 8, e80048. [Google Scholar] [CrossRef] [PubMed]
- Allan, K.; Devereux, G. Diet and asthma: Nutrition implications from prevention to treatment. J. Am. Diet. Assoc. 2011, 111, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.I.; Thompson, R.L.; Margetts, B.M. Dietary factors in the pathogenesis of asthma and chronic obstructive pulmonary disease. Curr. Allergy Asthma Rep. 2003, 3, 130–136. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Armentia, A.; Aller, R.; Asensio, A.; Sedano, E.; Izaola, O.; Cuellar, L. Dietary intake in patients with asthma: A case control study. Nutrition 2005, 21, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Smit, H.A.; Grievink, L.; Tabak, C. Dietary influences on chronic obstructive lung disease and asthma: A review of the epidemiological evidence. Proc. Nutr. Soc. 1999, 58, 309–319. [Google Scholar] [CrossRef]
- Wendell, S.G.; Baffi, C.; Holguin, F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014, 133, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef]
- Harris, W.S. The Omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot. Essent. Fatty Acids 2018, 132, 34–40. [Google Scholar] [CrossRef]
- Brannan, J.D.; Bood, J.; Alkhabaz, A.; Balgoma, D.; Otis, J.; Delin, I.; Dahlen, B.; Wheelock, C.E.; Nair, P.; Dahlen, S.E.; et al. The effect of omega-3 fatty acids on bronchial hyperresponsiveness, sputum eosinophilia, and mast cell mediators in asthma. Chest 2015, 147, 397–405. [Google Scholar] [CrossRef]
- Denisenko, Y.K.; Novgorodtseva, T.P.; Zhukova, N.V.; Antonuk, M.V.; Lobanova, E.G.; Kalinina, E.P. Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases. Biomed. Khim. 2016, 62, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, S.; Strom, M.; Maslova, E.; Dahl, R.; Hoffmann, H.J.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Granstrom, C.; Halldorsson, T.I.; et al. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J. Allergy Clin. Immunol. 2017, 139, 104–111.e4. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Bonnelykke, K. Fish Oil in Pregnancy and Asthma in Offspring. N. Engl. J. Med. 2017, 376, 1191–1192. [Google Scholar] [PubMed]
- Zhang, G.-Q.; Liu, B.; Li, J.; Luo, C.-Q.; Zhang, Q.; Chen, J.-L.; Sinha, A.; Li, Z.-Y. Fish intake during pregnancy or infancy and allergic outcomes in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2017, 28, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.; Moreira, A.; Fonseca, J.; Delgado, L.; Castel-Branco, M.G.; Haahtela, T.; Lopes, C.; Moreira, P. Dietary intake of alpha-linolenic acid and low ratio of n-6:n-3 PUFA are associated with decreased exhaled NO and improved asthma control. Br. J. Nutr. 2011, 106, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Broadfield, E.C.; McKeever, T.M.; Whitehurst, A.; Lewis, S.A.; Lawson, N.; Britton, J.; Fogarty, A. A case-control study of dietary and erythrocyte membrane fatty acids in asthma. Clin. Exp. Allergy 2004, 34, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.S.; Dockery, D.W.; Neas, L.M.; Schwartz, J.; Coull, B.A.; Raizenne, M.; Speizer, F.E. Low dietary nutrient intakes and respiratory health in adolescents. Chest 2007, 132, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Kompauer, I.; Demmelmair, H.; Koletzko, B.; Bolte, G.; Linseisen, J.; Heinrich, J. Association of fatty acids in serum phospholipids with lung function and bronchial hyperresponsiveness in adults. Eur. J. Epidemiol. 2008, 23, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Mickleborough, T.D.; Lindley, M.R.; Ionescu, A.A.; Fly, A.D. Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma. Chest 2006, 129, 39–49. [Google Scholar] [CrossRef]
- Mickleborough, T.D.; Murray, R.L.; Ionescu, A.A.; Lindley, M.R. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 2003, 168, 1181–1189. [Google Scholar] [CrossRef]
- Amiano, P.; Dorronsoro, M.; de Renobales, M.; Ruiz de Gordoa, J.C.; Irigoien, I.; Spain, E.G.O. Very-long-chain omega-3 fatty acids as markers for habitual fish intake in a population consuming mainly lean fish: The EPIC cohort of Gipuzkoa. European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2001, 55, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; Bingham, S.A.; Ive, J.; Friesen, M.D.; Wareham, N.J.; Riboli, E.; Khaw, K.T. Dietary fish intake and plasma phospholipid n-3 polyunsaturated fatty acid concentrations in men and women in the European Prospective Investigation into Cancer-Norfolk United Kingdom cohort. Am. J. Clin. Nutr. 2006, 84, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Woods, R.K.; Raven, J.M.; Walters, E.H.; Abramson, M.J.; Thien, F.C. Fatty acid levels and risk of asthma in young adults. Thorax 2004, 59, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xun, P.; Zamora, D.; Sood, A.; Liu, K.; Daviglus, M.; Iribarren, C.; Jacobs, D., Jr.; Shikany, J.M.; He, K. Intakes of long-chain omega-3 (n-3) PUFAs and fish in relation to incidence of asthma among American young adults: The CARDIA study. Am. J. Clin. Nutr. 2013, 97, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Jeebhay, M.F.; Robins, T.G.; Miller, M.E.; Bateman, E.; Smuts, M.; Baatjies, R.; Lopata, A.L. Occupational allergy and asthma among salt water fish processing workers. Am. J. Ind. Med. 2008, 51, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Pekkanen, J.; Sunyer, J.; Anto, J.M.; Burney, P. European Community Respiratory Health Survey. Operational definitions of asthma in studies on its aetiology. Eur. Respir. J. 2005, 26, 28–35. [Google Scholar] [CrossRef]
- Pepys, J. Types of Allergic reaction. Clin. Allergy 1973, 3, 491–509. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- American Thoracic Society. Standardization of spirometry—1994 Update. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar] [CrossRef]
- Vitallograph Limited, V. S-model spirometer. In Operating and Service Manual; Vitalograph: Buckingham, UK, 1982. [Google Scholar]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993, 6, 5–40. [Google Scholar] [CrossRef] [Green Version]
- ATS. Guidelines for Methacholine and Exercise Challenge Testing-1999. Am. J. Respir. Crit. Care Med. 2000, 16, 309–329. [Google Scholar]
- Cockcroft, D.W.; Murdock, K.Y.; Berscheid, B.A.; Gore, B.P. Sensitivity and specificity of histamine PC20 measurements in a random population. J. Allergy Clin. Immunol. 1985, 75, 142A. [Google Scholar] [CrossRef]
- Sterk, P.J.; Fabbri, L.M.; Quanjer, P.H.; Cockcroft, D.W.; O’Byrne, P.M.; Anderson, S.D.; Juniper, E.F.; Malo, J.-L. Airway responsiveness—Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 1993, 6, 53–83. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 8; StataCorp LP: College Station, TX, USA, 2003. [Google Scholar]
- Ehrlich, R.I.; White, N.; Norman, R.; Laubscher, R.; Steyn, K.; Lombard, C.; Bradshaw, D. Wheeze, asthma diagnosis and medication use: A national adult survey in a developing country. Thorax 2005, 60, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Van Schalkwyk, E.M.; Lombard, C.; Beyers, N.; Bateman, E.D.; Irusen, E. Prevalence of bronchial hyperresponsiveness in a low-income urban area of Cape Town, South Africa. European Respiratory Society Congress. Available online: http://scholar.sun.ac.za/handle/10019.1/38615 (accessed on 10 December 2018).
- Wenzel, S.E.; Covar, R. Update in asthma. Am. J. Respir. Crit. Care Med. 2006, 137, 698–706. [Google Scholar] [CrossRef] [PubMed]
- DunnGalvin, A.; Hourihane, J.O.; Frewer, L.; Knibb, R.C.; Oude Elberink, J.N.G.; Klinge, I. Incorporating a gender dimension in food allergy research: A review. Allergy 2006, 61, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Jeebhay, M.F.; Ngajilo, D.; le Moual, N. Risk factors for nonwork-related adult-onset asthma and occupational asthma: A comparative review. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Koper, I.; Hufnagl, K.; Ehmann, R. Gender aspects and influence of hormones on bronchial asthma—Secondary publication and update. World Allergy Organ. J. 2017, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Jeebhay, M.F.; Robins, T.G.; Lopata, A.L. World at work: Fish processing workers. Occup. Environ. Med. 2004, 61, 471–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, R.C.; Harris, W.S.; Pottala, J.V. Determinants of Blood Cell Omega-3 Fatty Acid Content. Open Biomark. J. 2008, 1, 1–6. [Google Scholar] [CrossRef]
- Sala-Vila, A.; Miles, E.A.; Calder, P.C. Fatty Acid composition abnormalities in atopic disease: Evidence explored and role in disease process examined. Clin. Exp. Allergy 2008, 38, 1432–1450. [Google Scholar] [CrossRef] [PubMed]
- McKeever, T.M.; Lewis, S.A.; Cassano, P.A.; Ocke, M.; Burney, P.; Britton, J.; Smit, H.A. The relation between dietary intake of individual fatty acids, FEV1 and respiratory disease in Dutch adults. Thorax 2008, 63, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Rimm, E.B. Fish Intake, Contaminants, and Human Health. Evaluating the Risks and the Benefits. JAMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.C.; O’Neill, B.; OSigge, G.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
Subject Characteristics | Prevalence (%) Mean/SD (n = 642) |
---|---|
Age (yrs) | |
- Overall | 34 (11) |
- Female | 34 (10) |
- Male | 35 (12) |
Gender | |
- Female | 414 (64%) |
- Male | 228 (36%) |
Atopic status (%) (n = 625) | 234 (37%) |
Mean (SD) % predicted FEV1 (n = 582) | 87 (14) |
Smoking no (%) | |
- Current | 328 (51%) |
- Ex-smoker | 72 (11%) |
- Non-smoker | 242 (38%) |
Past medical history | |
Previous treatment for tuberculosis | 81 (13%) |
Previous treatment for chronic bronchitis | 61 (9%) |
Previous treatment for recurrent chest infections | 36 (6%) |
Doctor-diagnosed asthma | 47 (7%) |
History of allergic disease | |
No. with ocular-nasal symptoms | 149 (23%) |
No. with hayfever in childhood | 30 (5%) |
No. on current asthma treatment | 29 (5%) |
No. on current hayfever treatment | 16 (2%) |
Asthma endpoints | |
- Asthma symptoms | 72 (11%) |
- Current asthma | 54 (8%) |
- NSBH (n = 542) | 141 (26%) |
Sensitization Variables | Prevalence (%) (n = 626) |
---|---|
All aeroallergens | |
Atopy (Positive to at least one aeroallergen) | 234 (37%) |
Positive to one aeroallergen | |
House dust mite | 155 (25%) |
Cockroach | 94 (15%) |
Rye grass | 89 (14%) |
Bermuda grass | 57 (9%) |
Dog | 34 (5%) |
Mouldmix | 22 (4%) |
Cat | 20 (3%) |
Aspergillus | 14 (2%) |
No. with one to three aeroallergens positive | 211 (32%) |
No. with greater than three aeroallergens positive | 35 (6%) |
At least one indoor allergen (HDM, cockroach, cat, dog) positive | 200 (32%) |
At least one pollen allergen (bermuda grass, rye grass) | 98 (16%) |
At least one mould allergen (mould mix, Aspergillus) | 33 (5%) |
Type of Fatty Acid | Mean PUFA Serum Level * Mean (SD) |
---|---|
n-3 series PUFAs (%) | |
18:3 ALA | 0.07 (0.05) |
20:5 EPA | 2.10 (1.40) |
22.5 DPA | 1.11 (0.37) |
22.6 DHA | 5.65 (1.61) |
n-6 series PUFAs (%) | |
18:2 LA | 18.45 (3.78) |
18:3 GLA | 0.06 (0.07) |
20:2 | 0.39 (0.17) |
20:3 DGLA | 2.26 (0.74) |
20:4 AA | 7.89 (1.94) |
22:2 | 0.63 (0.21) |
22:4 | 025 (0.13) |
Mono-unsaturated fatty acids (MUFA) | |
18:1 n-9 (OA) | 8.82 (1.66) |
Total | |
n-3 | 8.93 (2.86) |
n-6 | 29.93 (4.92) |
Prevalence (%) | Asthma Endpoints | |||
---|---|---|---|---|
Asthma Symptoms | Current Asthma (ECRHS) | NSBH a | Atopy | |
72/642 (11%) | 54/642 (8%) | 141/ 542 (26%) | 234/626 (37%) | |
Age (yrs) | 1.03 (1.00–1.05) * | 1.06 (1.03–1.08) *** | 1.01 (0.99–1.03) | 1.00 (0.99–1.02) |
Female gender | 0.85 (0.52–1.41) | 0.86 (0.48–1.52) | 2.71 (1.73–4.25) *** | 0.95 (0.68–1.32) |
Smoking | ||||
- Non-smoker | 1.00 | 1.00 | 1.00 | 1.00 |
- Ex-smoker | 1.59 (0.76–3.33) | 2.83 (1.34–5.99) ** | 1.63 (0.86–3.09) | 0.96 (0.55–1.67) |
- Current | 0.89 (0.52–1.52) | 0.80 (0.42–1.52) | 1.32 (0.86–2.02) | 1.06 (0.75–1.51) |
Type of Fatty Acid | Asthma Endpoints | ||
---|---|---|---|
Asthma Symptoms n = 72 | NSBH n = 141 | ATOPY a n = 234 | |
n-3 series polyunsaturated | |||
18:3 ALA | - | 0.18 (0.00–15.20) | 0.63 (0.17–23.17) |
20:5 EPA | 0.95 (0.79–1.14) | 0.68 (0.56–0.82) *** | 0.98 (0.87–1.11) |
22:5 DPA | 0.87 (0.44–1.73) | 0.38 (0.21–0.69) ** | 1.15 (0.74–1.80) |
22:6 DHA | 1.06 (0.91–1.23) | 1.01 (0.89–1.14) | 1.01 (0.91–1.12) |
n-6 series polyunsaturated | |||
18:2 LA | 0.99 (0.93–1.06) | 1.14 (1.08–1.21) *** | 1.04 (0.99–1.08) |
18:3 GLA | 0.12 (0.00–19.41) | 1.03 (0.04–25.99) | 2.10 (0.19–23.81) |
20:2 | 0.72 (0.13–4.03) | 1.38 (0.50–3.82) | 1.13 (0.44–2.93) |
20:3 DGLA | 1.13 (0.82–1.56) | 1.67 (1.27–2.20) *** | 1.06 (0.86–1.32) |
20:4 AA | 1.11 (0.98–1.27) | 1.18 (1.06–1.31) ** | 1.04 (0.95–1.13) |
22.2 | 1.28 (0.42–3.84) | 0.29 (0.10–0.87) * | 0.97 (0.45–2.09) |
22:4 | 1.35 (0.23–8.03) | 0.57 (0.12–2.78) | 1.52 (0.45–5.12) |
Mono-unsaturated fatty acids (MUFA) | |||
18:1 n-9 (OA) | 0.97 (0.83–1.14) | 0.86 (0.74–0.99) * | 1.04 (0.94–1.15) |
Total | |||
n-3 | 1.00 (0.92–1.10) | 0.92 (0.85–0.99) * | 1.00 (0.95–1.06) |
n-6 | 1.01 (0.96–1.07) | 1.14 (1.08–1.21) *** | 1.03 (0.99–1.06) |
Predictor | Asthma symptoms | NSBH | ATOPY | |
---|---|---|---|---|
n-3 series PUFAs | ||||
18:3 ALA | - | - | 0.16 (0.00–15.72) | 0.67 (0.02–25.11) |
20:5 EPA | 0.95 (0.79–1.14) | 0.66 (0.54–0.80) *** | 0.98 (0.87–1.11) | |
22.5 DPA | 0.90 (0.45–1.80) | 0.37 (0.20–0.69) ** | 1.16 (0.74–1.81) | |
22.6 DHA | 1.06 (0.91–1.24) | 1.01 (0.90–1.15) | 1.01 (0.92–1.12) | |
n-6 series PUFAs | ||||
18:2 LA | 0.99 (0.93–1.06) | 1.14 (1.07–1.22) *** | 1.04 (0.99–1.08) | |
18:3 GLA | 0.12 (0.00–19.42) | 0.93 (0.04–24.37) | 2.12 (0.19–24.08) | |
20:2 | 0.75 (0.14–4.11) | 1.36 (0.47–3.98) | 1.11 (0.43–2.89) | |
20:3 DGLA | 1.14 (0.83–1.57) | 1.84 (1.38–2.47) *** | 1.06 (0.85–1.32) | |
20:4 AA | 1.12 (0.98–1.27) | 1.21 (1.08–1.35) *** | 1.04 (0.95–1.13) | |
22:2 | 1.41 (0.46–4.32) | 0.28 (0.09–0.85) * | 0.96 (0.44–2.09) | |
22:4 | 1.37 (0.23–8.06) | 0.48 (0.10–2.33) | 1.48 (0.44–5.02) | |
Mono-unsaturated fatty acids (MUFA) | 0.97 (0.83–1.14) | 1 | 0.86 (0.74–0.99) * | (0.94–1.48) |
18:1 n-9 (OA) | ||||
Total | ||||
n-3 | 1.00(0.92–1.10) | 0.92 (0.85–0.99) * | 1.00 (0.95–1.06) | |
n-6 | 1.01 (0.96–1.07) | 1.14 (1.08–1.21) *** | 1.03 (0.99–1.60) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, S.; Lopata, A.L.; Smuts, C.M.; Baatjies, R.; Jeebhay, M.F. Relationship between Serum Omega-3 Fatty Acid and Asthma Endpoints. Int. J. Environ. Res. Public Health 2019, 16, 43. https://doi.org/10.3390/ijerph16010043
Adams S, Lopata AL, Smuts CM, Baatjies R, Jeebhay MF. Relationship between Serum Omega-3 Fatty Acid and Asthma Endpoints. International Journal of Environmental Research and Public Health. 2019; 16(1):43. https://doi.org/10.3390/ijerph16010043
Chicago/Turabian StyleAdams, Shahieda, Andreas L. Lopata, Cornelius M. Smuts, Roslynn Baatjies, and Mohamed F. Jeebhay. 2019. "Relationship between Serum Omega-3 Fatty Acid and Asthma Endpoints" International Journal of Environmental Research and Public Health 16, no. 1: 43. https://doi.org/10.3390/ijerph16010043